These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 15109078)
1. Reflection of an orienting reflex in the phases of evoked potentials in the rabbit visual cortex and hippocampus during substitution of stimulus intensity. Polyanskii VB; Evtikhin DV; Sokolov EN Neurosci Behav Physiol; 2004 Jan; 34(1):19-28. PubMed ID: 15109078 [TBL] [Abstract][Full Text] [Related]
2. [The phases of visual cortex and hippocampal evoked potentials in rabbit reflect the orienting reaction in case of visual stimuli intensity changes]. Polianskiĭ VB; Evtikhin DV; Sokolov EN Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(1):51-61. PubMed ID: 12669504 [TBL] [Abstract][Full Text] [Related]
3. Limited plasticity of difference neurons in the visual cortex and hippocampus in rabbits during the oddball (random substitutions) test. Polyanskii VB; Evtikhin DV; Sokolov EN; Kryuchkova AV Neurosci Behav Physiol; 2006 Jun; 36(5):441-8. PubMed ID: 16645755 [TBL] [Abstract][Full Text] [Related]
4. Cortical and subcortical visual event-related potentials to oddball stimuli in rabbits. Astikainen P; Ruusuvirta T; Korhonen T Neuroreport; 2000 May; 11(7):1515-7. PubMed ID: 10841368 [TBL] [Abstract][Full Text] [Related]
5. [Limited plasticity of the rabbit visual cortex and hippocampal neurons in the oddball test]. Polianskiĭ VB; Evtikhin DV; Sokolov EN; Kriuchkova AV Zh Vyssh Nerv Deiat Im I P Pavlova; 2005; 55(3):360-7. PubMed ID: 16033237 [TBL] [Abstract][Full Text] [Related]
6. Evoked potentials in the rabbit visual cortex reflect changes in line orientation and intensity. Polyanskii VB; Alymkulov DE; Sokolov EN; Radzievskaya MG; Ruderman GL Neurosci Behav Physiol; 2010 Feb; 40(2):205-13. PubMed ID: 20033313 [TBL] [Abstract][Full Text] [Related]
7. [Visual evoked potentials in rabbit's visual cortex reflect variations in orientation and intensity of lines]. Polianskiĭ VB; Alymkulov DE; Sokolov EN; Radzievskaia MG; Ruderman GL Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(6):688-99. PubMed ID: 19178071 [TBL] [Abstract][Full Text] [Related]
8. Human visual system automatically encodes sequential regularities of discrete events. Kimura M; Schröger E; Czigler I; Ohira H J Cogn Neurosci; 2010 Jun; 22(6):1124-39. PubMed ID: 19583466 [TBL] [Abstract][Full Text] [Related]
9. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity. Muller-Gass A; Stelmack RM; Campbell KB Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283 [TBL] [Abstract][Full Text] [Related]
10. ERPs to pitch changes: a result of reduced responses to standard tones in rabbits. Ruusuvirta T; Korhonen T; Arikoski J; Kivirikko K Neuroreport; 1996 Jan; 7(2):413-6. PubMed ID: 8730794 [TBL] [Abstract][Full Text] [Related]
11. Involuntary orientation of attention to unattended deviant nociceptive stimuli is modulated by concomitant visual task difficulty. Evidence from laser evoked potentials. Legrain V; Bruyer R; Guérit JM; Plaghki L Clin Neurophysiol; 2005 Sep; 116(9):2165-74. PubMed ID: 16055373 [TBL] [Abstract][Full Text] [Related]
12. A visual analog of mismatch negativity when stimuli differ in duration. Khodanovich MY; Esipenko EA; Svetlik MV; Krutenkova EP Neurosci Behav Physiol; 2010 Jul; 40(6):653-61. PubMed ID: 20549371 [TBL] [Abstract][Full Text] [Related]
13. Hippocampal evoked potentials to pitch deviances in an auditory oddball situation in the rabbit: no human mismatch-like dependence on standard stimuli. Ruusuvirta T; Korhonen T; Penttonen M; Arikoski J Neurosci Lett; 1995 Feb; 185(2):123-6. PubMed ID: 7746502 [TBL] [Abstract][Full Text] [Related]
14. Multiple-unit responses to pitch changes in rabbits. Ruusuvirta T; Korhonen T; Arikoski J; Kivirikko K Neuroreport; 1996 May; 7(7):1266-8. PubMed ID: 8817546 [TBL] [Abstract][Full Text] [Related]
15. [Sound affects the discrimination of weak intensities of light in the visual cortex of the rabbit depending on time intervals between sound and light]. Polianskiĭ VB; Alymkulov DÉ; Evtikhin DV; Chernyshev BV Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(5):531-41. PubMed ID: 25710074 [TBL] [Abstract][Full Text] [Related]
16. Assessing cross-modal target transition effects with a visual-auditory oddball. Kiat JE Int J Psychophysiol; 2018 Jul; 129():58-66. PubMed ID: 29723555 [TBL] [Abstract][Full Text] [Related]
17. Intermodal selective attention. I. Effects on event-related potentials to lateralized auditory and visual stimuli. Woods DL; Alho K; Algazi A Electroencephalogr Clin Neurophysiol; 1992 May; 82(5):341-55. PubMed ID: 1374703 [TBL] [Abstract][Full Text] [Related]
18. Modulation of event-related potentials in normal human subjects by visual divided attention to spatial and color factors. Omoto S; Kuroiwa Y; Li M; Doi H; Shimamura M; Koyano S; Segawa H; Suzuki Y Neurosci Lett; 2001 Oct; 311(3):198-202. PubMed ID: 11578828 [TBL] [Abstract][Full Text] [Related]
19. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training. Nikjeh DA; Lister JJ; Frisch SA Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778 [TBL] [Abstract][Full Text] [Related]