BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 15109258)

  • 1. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the substrate specificity loop of the HAD superfamily cap domain.
    Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.
    Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN
    Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis.
    Baker AS; Ciocci MJ; Metcalf WW; Kim J; Babbitt PC; Wanner BL; Martin BM; Dunaway-Mariano D
    Biochemistry; 1998 Jun; 37(26):9305-15. PubMed ID: 9649311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range.
    Schanstra JP; Ridder IS; Heimeriks GJ; Rink R; Poelarends GJ; Kalk KH; Dijkstra BW; Janssen DB
    Biochemistry; 1996 Oct; 35(40):13186-95. PubMed ID: 8855957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential influence of Asp in the Ca2+ coordination position 5 of parvalbumin on the calcium-binding affinity: a computational study.
    Zhao J; Nelson DJ; Huo S
    J Inorg Biochem; 2006 Nov; 100(11):1879-87. PubMed ID: 16965819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational flexibility of PEP mutase.
    Liu S; Lu Z; Han Y; Jia Y; Howard A; Dunaway-Mariano D; Herzberg O
    Biochemistry; 2004 Apr; 43(15):4447-53. PubMed ID: 15078090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli.
    Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM
    Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase.
    Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C
    J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition.
    Nagem RA; Rojas AL; Golubev AM; Korneeva OS; Eneyskaya EV; Kulminskaya AA; Neustroev KN; Polikarpov I
    J Mol Biol; 2004 Nov; 344(2):471-80. PubMed ID: 15522299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues.
    Skirgaila R; Grazulis S; Bozic D; Huber R; Siksnys V
    J Mol Biol; 1998 Jun; 279(2):473-81. PubMed ID: 9642051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis.
    Morais MC; Zhang G; Zhang W; Olsen DB; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2004 Mar; 279(10):9353-61. PubMed ID: 14670958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.