BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15109269)

  • 1. Peptide repair of oxidative DNA damage.
    Milligan JR; Tran NQ; Ly A; Ward JF
    Biochemistry; 2004 May; 43(17):5102-8. PubMed ID: 15109269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of oxidative DNA damage by amino acids.
    Milligan JR; Aguilera JA; Ly A; Tran NQ; Hoang O; Ward JF
    Nucleic Acids Res; 2003 Nov; 31(21):6258-63. PubMed ID: 14576314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of oxidative guanine damage in plasmid DNA by indoles involves proton transfer between complementary bases.
    Ly A; Tran NQ; Ward JF; Milligan JR
    Biochemistry; 2004 Jul; 43(28):9098-104. PubMed ID: 15248767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of DNA guanyl radicals with phenolate anions.
    Ly A; Bandong SL; Tran NQ; Sullivan KJ; Milligan JR
    J Phys Chem B; 2005 Jul; 109(27):13368-74. PubMed ID: 16852669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic peptides containing tyrosine protect against radiation-induced oxidative DNA damage.
    Ly A; Bullick S; Won JH; Milligan JR
    Int J Radiat Biol; 2006 Jun; 82(6):421-33. PubMed ID: 16846977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of guanyl radicals in plasmid DNA with biological reductants: chemical repair of DNA damage produced by the direct effect of ionizing radiation.
    Milligan JR; Aguilera JA; Mares EJ; Paglinawan RA; Ward JF
    Int J Radiat Biol; 2001 Nov; 77(11):1095-108. PubMed ID: 11683980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox reactivity of guanyl radicals in plasmid DNA.
    Milligan JR; Aguilera JA; Nguyen JV; Ward JF
    Int J Radiat Biol; 2001 Mar; 77(3):281-93. PubMed ID: 11258842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of ionizing radiation clustered damage: estimate of the migration distance of holes through DNA via guanyl radicals under physiological conditions.
    Milligan JR; Aguilera JA; Paglinawan RA; Nguyen KJ; Ward JF
    Int J Radiat Biol; 2002 Aug; 78(8):733-41. PubMed ID: 12194757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-electron oxidation of plasmid DNA by selenium(V) species.
    Milligan JR; Aguilera JA; Paglinawan RA; Ward JF
    Int J Radiat Biol; 2002 May; 78(5):359-74. PubMed ID: 12020427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic radioprotection of pBR322 by thiols: effect of thiol net charge upon scavenging of hydroxyl radicals and repair of DNA radicals.
    Zheng S; Newton GL; Ward JF; Fahey RC
    Radiat Res; 1992 May; 130(2):183-93. PubMed ID: 1574574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of proton transfer in the reductive repair of DNA guanyl radicals by aniline derivatives.
    Ly A; Tran NQ; Sullivan K; Bandong SL; Milligan JR
    Org Biomol Chem; 2005 Mar; 3(5):917-23. PubMed ID: 15731879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of electron deficient guanine radical species in plasmid DNA by tyrosine derivatives.
    Tsoi M; Do TT; Tang VJ; Aguilera JA; Milligan JR
    Org Biomol Chem; 2010 Jun; 8(11):2553-9. PubMed ID: 20485790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of guanyl radicals in plasmid DNA by electron transfer is coupled to proton transfer.
    Milligan JR; Aguilera JA; Hoang O; Ly A; Tran NQ; Ward JF
    J Am Chem Soc; 2004 Feb; 126(6):1682-7. PubMed ID: 14871098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection against radiation-induced DNA damage by amino acids: a DFT study.
    Jena NR; Mishra PC; Suhai S
    J Phys Chem B; 2009 Apr; 113(16):5633-44. PubMed ID: 19334703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox equilibrium between guanyl radicals and thiocyanate influences base damage yields in gamma irradiated plasmid DNA. Estimation of the reduction potential of guanyl radicals in plasmid DNA in aqueous solution at physiological ionic strength.
    Milligan JR; Aguilera JA; Ward JF
    Int J Radiat Biol; 2001 Dec; 77(12):1195-205. PubMed ID: 11747544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary reactions and strategies to improve quantitative protein footprinting.
    Xu G; Kiselar J; He Q; Chance MR
    Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.
    Dong M; Vongchampa V; Gingipalli L; Cloutier JF; Kow YW; O'Connor T; Dedon PC
    Mutat Res; 2006 Feb; 594(1-2):120-34. PubMed ID: 16274707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer between guanosine radicals and amino acids in aqueous solution. II. Reduction of guanosine radicals by tryptophan.
    Morozova OB; Kiryutin AS; Yurkovskaya AV
    J Phys Chem B; 2008 Mar; 112(9):2747-54. PubMed ID: 18266352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.