BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 1510932)

  • 1. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein.
    Zeidel ML; Ambudkar SV; Smith BL; Agre P
    Biochemistry; 1992 Aug; 31(33):7436-40. PubMed ID: 1510932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study.
    Verbavatz JM; Brown D; Sabolić I; Valenti G; Ausiello DA; Van Hoek AN; Ma T; Verkman AS
    J Cell Biol; 1993 Nov; 123(3):605-18. PubMed ID: 7693713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional reconstitution of the isolated erythrocyte water channel CHIP28.
    van Hoek AN; Verkman AS
    J Biol Chem; 1992 Sep; 267(26):18267-9. PubMed ID: 1526967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein.
    Preston GM; Carroll TP; Guggino WB; Agre P
    Science; 1992 Apr; 256(5055):385-7. PubMed ID: 1373524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy.
    Van Hoek AN; Wiener M; Bicknese S; Miercke L; Biwersi J; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11847-56. PubMed ID: 8218256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
    Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel.
    Preston GM; Jung JS; Guggino WB; Agre P
    J Biol Chem; 1993 Jan; 268(1):17-20. PubMed ID: 7677994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers.
    Shi LB; Skach WR; Verkman AS
    J Biol Chem; 1994 Apr; 269(14):10417-22. PubMed ID: 7511600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis and association state of water channel (AQP-1) isoforms purified from six mammals.
    Schulte DJ; van Hoek AN
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Sep; 118(1):35-43. PubMed ID: 9417990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aquaporin CHIP: the archetypal molecular water channel.
    Agre P; Preston GM; Smith BL; Jung JS; Raina S; Moon C; Guggino WB; Nielsen S
    Am J Physiol; 1993 Oct; 265(4 Pt 2):F463-76. PubMed ID: 7694481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Birth of water channel proteins-the aquaporins.
    Benga G
    Cell Biol Int; 2003; 27(9):701-9. PubMed ID: 12972274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron.
    Nielsen S; Smith BL; Christensen EI; Knepper MA; Agre P
    J Cell Biol; 1993 Jan; 120(2):371-83. PubMed ID: 7678419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and functional reconstitution of the human CHIP28 water channel expressed in Saccharomyces cerevisiae.
    Laizé V; Ripoche P; Tacnet F
    Protein Expr Purif; 1997 Dec; 11(3):284-8. PubMed ID: 9425633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin.
    Le Cahérec F; Bron P; Verbavatz JM; Garret A; Morel G; Cavalier A; Bonnec G; Thomas D; Gouranton J; Hubert JF
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1285-95. PubMed ID: 8799818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28.
    Zhang R; Skach W; Hasegawa H; van Hoek AN; Verkman AS
    J Cell Biol; 1993 Jan; 120(2):359-69. PubMed ID: 8421053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure, pharmacologic inhibition, and transport selectivity of aquaporin channel-forming integral protein in proteoliposomes.
    Zeidel ML; Nielsen S; Smith BL; Ambudkar SV; Maunsbach AB; Agre P
    Biochemistry; 1994 Feb; 33(6):1606-15. PubMed ID: 8312280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultured bovine corneal endothelial cells express CHIP28 water channels.
    Echevarría M; Kuang K; Iserovich P; Li J; Preston GM; Agre P; Fischbarg J
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1349-55. PubMed ID: 7694494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a glycerol pathway through aquaporin 1 (CHIP28) channels.
    Abrami L; Tacnet F; Ripoche P
    Pflugers Arch; 1995 Jul; 430(3):447-58. PubMed ID: 7491270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4.
    Yang B; van Hoek AN; Verkman AS
    Biochemistry; 1997 Jun; 36(24):7625-32. PubMed ID: 9200715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and structure-function analysis of native, PNGase F-treated, and endo-beta-galactosidase-treated CHIP28 water channels.
    van Hoek AN; Wiener MC; Verbavatz JM; Brown D; Lipniunas PH; Townsend RR; Verkman AS
    Biochemistry; 1995 Feb; 34(7):2212-9. PubMed ID: 7532004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.