BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 1510964)

  • 1. Circular dichroism studies on calcium binding to two series of Ca2+ binding site mutants of Drosophila melanogaster calmodulin.
    Maune JF; Beckingham K; Martin SR; Bayley PM
    Biochemistry; 1992 Sep; 31(34):7779-86. PubMed ID: 1510964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ binding and conformational change in two series of point mutations to the individual Ca(2+)-binding sites of calmodulin.
    Maune JF; Klee CB; Beckingham K
    J Biol Chem; 1992 Mar; 267(8):5286-95. PubMed ID: 1544911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlobe communication in multiple calcium-binding site mutants of Drosophila calmodulin.
    Mukherjea P; Maune JF; Beckingham K
    Protein Sci; 1996 Mar; 5(3):468-77. PubMed ID: 8868483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stopped-flow studies of calcium dissociation from calcium-binding-site mutants of Drosophila melanogaster calmodulin.
    Martin SR; Maune JF; Beckingham K; Bayley PM
    Eur J Biochem; 1992 May; 205(3):1107-14. PubMed ID: 1576994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A series of point mutations reveal interactions between the calcium-binding sites of calmodulin.
    Starovasnik MA; Su DR; Beckingham K; Klevit RE
    Protein Sci; 1992 Feb; 1(2):245-53. PubMed ID: 1363934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides.
    Findlay WA; Martin SR; Beckingham K; Bayley PM
    Biochemistry; 1995 Feb; 34(7):2087-94. PubMed ID: 7857920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ binding and conformational changes in a calmodulin domain.
    Evenäs J; Malmendal A; Thulin E; Carlström G; Forsén S
    Biochemistry; 1998 Sep; 37(39):13744-54. PubMed ID: 9753463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Eu(III) binding to a series of calmodulin binding site mutants using laser-induced Eu(III) luminescence spectroscopy.
    Bruno J; Horrocks WD; Beckingham K
    Biophys Chem; 1996 Dec; 63(1):1-16. PubMed ID: 8981747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a trapped intermediate of calmodulin: calcium regulation of EF-hand proteins from a new perspective.
    Grabarek Z
    J Mol Biol; 2005 Mar; 346(5):1351-66. PubMed ID: 15713486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of site-directed mutations in the individual Ca2(+)-binding sites of calmodulin to examine Ca2(+)-induced conformational changes.
    Beckingham K
    J Biol Chem; 1991 Apr; 266(10):6027-30. PubMed ID: 1901056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
    Fefeu S; Biekofsky RR; McCormick JE; Martin SR; Bayley PM; Feeney J
    Biochemistry; 2000 Dec; 39(51):15920-31. PubMed ID: 11123919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies of the E140Q mutant of the carboxy-terminal domain of calmodulin reveal global conformational exchange in the Ca2+-saturated state.
    Evenäs J; Thulin E; Malmendal A; Forsén S; Carlström G
    Biochemistry; 1997 Mar; 36(12):3448-57. PubMed ID: 9131994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure/calcium affinity relationships of site III of calmodulin: testing the acid pair hypothesis using calmodulin mutants.
    Wu X; Reid RE
    Biochemistry; 1997 Jul; 36(28):8649-56. PubMed ID: 9214312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin.
    Meyer DF; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 May; 271(19):11284-90. PubMed ID: 8626680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by mutagenesis and NMR spectroscopy.
    Moser MJ; Lee SY; Klevit RE; Davis TN
    J Biol Chem; 1995 Sep; 270(35):20643-52. PubMed ID: 7657644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation.
    Wu X; Reid RE
    Biochemistry; 1997 Mar; 36(12):3608-16. PubMed ID: 9132012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of beta-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin.
    Browne JP; Strom M; Martin SR; Bayley PM
    Biochemistry; 1997 Aug; 36(31):9550-61. PubMed ID: 9236001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium binding induces interaction between the N- and C-terminal domains of yeast calmodulin and modulates its overall conformation.
    Nakashima K; Ishida H; Ohki SY; Hikichi K; Yazawa M
    Biochemistry; 1999 Jan; 38(1):98-104. PubMed ID: 9890887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-binding properties of a calcium-dependent protein kinase from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation.
    Zhao Y; Pokutta S; Maurer P; Lindt M; Franklin RM; Kappes B
    Biochemistry; 1994 Mar; 33(12):3714-21. PubMed ID: 8142371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking the Ca2+-induced conformational transitions in calmodulin with disulfide bonds.
    Tan RY; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 Mar; 271(13):7479-83. PubMed ID: 8631777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.