These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15109701)

  • 21. Age-related deterioration of cortical responses to slow FM sounds in the auditory belt region of adult C57BL/6 mice.
    Tsukano H; Horie M; Honma Y; Ohga S; Hishida R; Takebayashi H; Takahashi S; Shibuki K
    Neurosci Lett; 2013 Nov; 556():204-9. PubMed ID: 24161895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus.
    Zhang Z; Liu CH; Yu YQ; Fujimoto K; Chan YS; He J
    J Neurophysiol; 2008 Jun; 99(6):2938-45. PubMed ID: 18417625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat.
    Anderson LA; Malmierca MS
    Eur J Neurosci; 2013 Jan; 37(1):52-62. PubMed ID: 23121128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of nembutal anesthesia on the auditory steady-state response (ASSR) from the inferior colliculus and auditory cortex of the chinchilla.
    Szalda K; Burkard R
    Hear Res; 2005 May; 203(1-2):32-44. PubMed ID: 15855028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corticofugal modulation of acoustically induced Fos expression in the rat auditory pathway.
    Sun X; Xia Q; Lai CH; Shum DK; Chan YS; He J
    J Comp Neurol; 2007 Apr; 501(4):509-25. PubMed ID: 17278128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repetition of complex frequency-modulated sweeps enhances neuromagnetic responses in the human auditory cortex.
    Altmann CF; Klein C; Heinemann LV; Wibral M; Gaese BH; Kaiser J
    Hear Res; 2011 Dec; 282(1-2):216-24. PubMed ID: 21839158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Activation of proto-oncogene c-fos in the auditory tract of rats stimulation with wide-band noise].
    Olucha FE; Molina Mira A; Valenzuela Méndez C; Valverde Navarro AA; Martínez Soriano F
    Acta Otorrinolaringol Esp; 1997 Mar; 48(2):85-92. PubMed ID: 9198474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory frequency-following responses in rat ipsilateral inferior colliculus.
    Ping J; Li N; Galbraith GC; Wu X; Li L
    Neuroreport; 2008 Sep; 19(14):1377-80. PubMed ID: 18766015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novelty detector neurons in the mammalian auditory midbrain.
    Pérez-González D; Malmierca MS; Covey E
    Eur J Neurosci; 2005 Dec; 22(11):2879-85. PubMed ID: 16324123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Azimuthal processing in the posterior auditory thalamus of cats.
    Aitkin L; Jones R
    Neurosci Lett; 1992 Aug; 142(1):81-4. PubMed ID: 1407724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous neuronal responses to frequency-modulated tones in the primary auditory cortex of awake cats.
    Qin L; Wang J; Sato Y
    J Neurophysiol; 2008 Sep; 100(3):1622-34. PubMed ID: 18632883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of information redundancy in the ascending auditory pathway.
    Chechik G; Anderson MJ; Bar-Yosef O; Young ED; Tishby N; Nelken I
    Neuron; 2006 Aug; 51(3):359-68. PubMed ID: 16880130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brief exposure of juvenile rats to noise impairs the development of the response properties of inferior colliculus neurons.
    Grécová J; Bures Z; Popelár J; Suta D; Syka J
    Eur J Neurosci; 2009 May; 29(9):1921-30. PubMed ID: 19473244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat.
    Zhao L; Liu Y; Shen L; Feng L; Hong B
    Neuroscience; 2011 May; 181():163-74. PubMed ID: 21284952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sound-induced changes of infraslow brain potential fluctuations in the medial geniculate nucleus and primary auditory cortex in anaesthetized rats.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2007 Feb; 1133(1):78-86. PubMed ID: 17196561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiology of the aged Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli.
    Palombi PS; Caspary DM
    J Neurophysiol; 1996 Nov; 76(5):3114-25. PubMed ID: 8930259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cochlear nucleus, inferior colliculus, and medial geniculate responses during the behavioral detection of threshold-level auditory stimuli in the rabbit.
    Kettner RE; Thompson RF
    J Acoust Soc Am; 1985 Jun; 77(6):2111-27. PubMed ID: 4019898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiologic acoustic basis of speech perception.
    Angelo R
    Otolaryngol Clin North Am; 1985 May; 18(2):285-303. PubMed ID: 2989756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related changes in GAD levels in the central auditory system of the rat.
    Burianova J; Ouda L; Profant O; Syka J
    Exp Gerontol; 2009 Mar; 44(3):161-9. PubMed ID: 18930128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efferent connections of "posterodorsal" auditory area in the rat cortex: implications for auditory spatial processing.
    Kimura A; Donishi T; Okamoto K; Tamai Y
    Neuroscience; 2004; 128(2):399-419. PubMed ID: 15350651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.