BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 15109756)

  • 21. [Computer-based motion simulation of total hip prostheses with ceramic-on-ceramic wear couple. Analysis of implant design andorientation as influence parameters].
    Bader R; Steinhauser E; Gradinger R; Willmann G; Mittelmeier W
    Z Orthop Ihre Grenzgeb; 2002; 140(3):310-6. PubMed ID: 12085297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-dependent elastohydrodynamic lubrication analysis of total knee replacement under walking conditions.
    Su Y; Yang P; Fu Z; Jin Z; Wang C
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):539-48. PubMed ID: 21390940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress analysis of hemispherical ceramic hip prosthesis bearings.
    Anderson IA; Bowden M; Wyatt TP
    Med Eng Phys; 2005 Mar; 27(2):115-22. PubMed ID: 15642507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of wear of bearing surfaces on elastohydrodynamic lubrication of metal-on-metal hip implants.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    Proc Inst Mech Eng H; 2005 Sep; 219(5):319-28. PubMed ID: 16225148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing.
    Liu F; Wang FC; Jin ZM; Hirt F; Rieker C; Grigoris P
    Proc Inst Mech Eng H; 2004; 218(4):261-70. PubMed ID: 15376728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3-D model of a total hip replacement in vivo providing hydrodynamic pressure and film thickness for walking and bicycling.
    Meyer DM; Tichy JA
    J Biomech Eng; 2003 Dec; 125(6):777-84. PubMed ID: 14986401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The thixotropic effect of the synovial fluid in squeeze-film lubrication of the human hip joint.
    Hlavácek M
    Biorheology; 2001; 38(4):319-34. PubMed ID: 11673647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometric element analysis of fretting in a model of a modular femoral component of a hip implant.
    Lewis G
    Biomed Mater Eng; 2004; 14(1):43-51. PubMed ID: 14757952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of friction and lubrication of different hip prostheses.
    Scholes SC; Unsworth A
    Proc Inst Mech Eng H; 2000; 214(1):49-57. PubMed ID: 10718050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lubrication and friction prediction in metal-on-metal hip implants.
    Wang FC; Brockett C; Williams S; Udofia I; Fisher J; Jin ZM
    Phys Med Biol; 2008 Mar; 53(5):1277-93. PubMed ID: 18296762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of elastohydrodynamic lubrication in a novel metal-on-metal hip joint replacement.
    Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2002; 216(3):185-93. PubMed ID: 12137285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A general elastohydrodynamic lubrication analysis of artificial hip joints employing a compliant layered socket under steady state rotation.
    Wang FC; Liu F; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):283-91. PubMed ID: 15532994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Bionic surface design in metal on metal bearings for total hip arthroplasty--optimization of tribological characteristics].
    Böhling U; Scholz J; Thomas W; Grundei H
    Biomed Tech (Berl); 2005 Apr; 50(4):119-23. PubMed ID: 15884709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional modeling of in vitro hip kinematics under micro-separation regime for ceramic on ceramic total hip prosthesis: an analysis of vibration and noise.
    Sariali E; Stewart T; Jin Z; Fisher J
    J Biomech; 2010 Jan; 43(2):326-33. PubMed ID: 19892358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of component design, bearing clearance and axial load on the squeaking characteristics of ceramic hip articulations.
    Hothan A; Huber G; Weiss C; Hoffmann N; Morlock M
    J Biomech; 2011 Mar; 44(5):837-41. PubMed ID: 21295782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.
    Hu XQ; Wood RJ; Taylor A; Tuke MA
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1061-9. PubMed ID: 22292204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus.
    Jin ZM; Dowson D; Fisher J
    Proc Inst Mech Eng H; 1997; 211(3):247-56. PubMed ID: 9256001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of contact mechanics in ceramic-on-ceramic hip joint replacements.
    Mak MM; Jin ZM
    Proc Inst Mech Eng H; 2002; 216(4):231-6. PubMed ID: 12206519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.
    Kang L; Galvin AL; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):33-46. PubMed ID: 16459444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.