These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 1510976)

  • 1. Inhibition of XMRV and HIV-1 proteases by pepstatin A and acetyl-pepstatin.
    Matúz K; Mótyán J; Li M; Wlodawer A; Tőzsér J
    FEBS J; 2012 Sep; 279(17):3276-86. PubMed ID: 22804908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
    Sun J; Raymundo MAV; Chang CA
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient HIV-1 Gag-protease interactions revealed by paramagnetic NMR suggest origins of compensatory drug resistance mutations.
    Deshmukh L; Louis JM; Ghirlando R; Clore GM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12456-12461. PubMed ID: 27791180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational selection in protein binding and function.
    Weikl TR; Paul F
    Protein Sci; 2014 Nov; 23(11):1508-18. PubMed ID: 25155241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Flap Dynamics in Wild-type and a Drug Resistant Variant of HIV-1 Protease Revealed by Molecular Dynamics and NMR Relaxation.
    Cai Y; Yilmaz NK; Myint W; Ishima R; Schiffer CA
    J Chem Theory Comput; 2012 Oct; 8(10):3452-3462. PubMed ID: 23144597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacologic and nonpharmacologic options for the management of HIV infection during pregnancy.
    Zorrilla CD; Tamayo-Agrait V
    HIV AIDS (Auckl); 2009; 1():41-53. PubMed ID: 22096378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-steady-state kinetics of interaction of wild-type and multiple drug-resistant HIV protease with first and second generation inhibitory drugs.
    Kuznetsov NA; Kozyr AV; Dronina MA; Smirnov IV; Kaliberda EN; Mikhailova AG; Rumsh LD; Fedorova OS; Gabibov AG; Kolesnikov AV
    Dokl Biochem Biophys; 2011; 440():239-43. PubMed ID: 22095129
    [No Abstract]   [Full Text] [Related]  

  • 9. Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket.
    Li D; Ji B; Hwang KC; Huang Y
    PLoS One; 2011 Apr; 6(4):e19268. PubMed ID: 21559397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network.
    Rücker P; Horn AH; Meiselbach H; Sticht H
    J Mol Model; 2011 Oct; 17(10):2693-705. PubMed ID: 21279524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A solution NMR study of the binding kinetics and the internal dynamics of an HIV-1 protease-substrate complex.
    Katoh E; Louis JM; Yamazaki T; Gronenborn AM; Torchia DA; Ishima R
    Protein Sci; 2003 Jul; 12(7):1376-85. PubMed ID: 12824484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid structural fluctuations of the free HIV protease flaps in solution: relationship to crystal structures and comparison with predictions of dynamics calculations.
    Freedberg DI; Ishima R; Jacob J; Wang YX; Kustanovich I; Louis JM; Torchia DA
    Protein Sci; 2002 Feb; 11(2):221-32. PubMed ID: 11790832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug resistance mutations can effect dimer stability of HIV-1 protease at neutral pH.
    Xie D; Gulnik S; Gustchina E; Yu B; Shao W; Qoronfleh W; Nathan A; Erickson JW
    Protein Sci; 1999 Aug; 8(8):1702-7. PubMed ID: 10452615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step binding mechanism for HIV protease inhibitors.
    Furfine ES; D'Souza E; Ingold KJ; Leban JJ; Spector T; Porter DJ
    Biochemistry; 1992 Sep; 31(34):7886-91. PubMed ID: 1510976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyethylene isostere inhibitors of human immunodeficiency virus-1 protease: structure-activity analysis using enzyme kinetics, X-ray crystallography, and infected T-cell assays.
    Dreyer GB; Lambert DM; Meek TD; Carr TJ; Tomaszek TA; Fernandez AV; Bartus H; Cacciavillani E; Hassell AM; Minnich M
    Biochemistry; 1992 Jul; 31(29):6646-59. PubMed ID: 1637805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate analogue inhibition and active site titration of purified recombinant HIV-1 protease.
    Tomasselli AG; Olsen MK; Hui JO; Staples DJ; Sawyer TK; Heinrikson RL; Tomich CS
    Biochemistry; 1990 Jan; 29(1):264-9. PubMed ID: 2182116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystallographic structure of a complex between a synthetic protease of human immunodeficiency virus 1 and a substrate-based hydroxyethylamine inhibitor.
    Swain AL; Miller MM; Green J; Rich DH; Schneider J; Kent SB; Wlodawer A
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8805-9. PubMed ID: 2247451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small dipeptide-based HIV protease inhibitors containing the hydroxymethylcarbonyl isostere as an ideal transition-state mimic.
    Kiso Y; Matsumoto H; Mizumoto S; Kimura T; Fujiwara Y; Akaji K
    Biopolymers; 1999; 51(1):59-68. PubMed ID: 10380353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reviewing the experimental and mathematical factors involved in tight binding inhibitors K
    Reytor Gonzalez ML; Alonso Del Rivero Antigua M
    Biochimie; 2021 Feb; 181():86-95. PubMed ID: 33221375
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.