These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 1510977)

  • 41. Differential inhibition of fungal oxidosqualene cyclase by 6E and 6Z isomers of 2,3-epoxy-10-aza-10,11-dihydrosqualene.
    Balliano G; Milla P; Ceruti M; Viola F; Carrano L; Cattel L
    FEBS Lett; 1993 Apr; 320(3):203-6. PubMed ID: 8462686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata: a step toward discovering preponderant α-amyrin-producing activity.
    Srisawat P; Fukushima EO; Yasumoto S; Robertlee J; Suzuki H; Seki H; Muranaka T
    New Phytol; 2019 Oct; 224(1):352-366. PubMed ID: 31230357
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzymatic cyclization of 22,23-dihydro-2,3-oxidosqualene into euph-7-en-3beta-ol and bacchar-12-en-3beta-ol by recombinant beta-amyrin synthase.
    Abe I; Sakano Y; Tanaka H; Lou W; Noguchi H; Shibuya M; Ebizuka Y
    J Am Chem Soc; 2004 Mar; 126(11):3426-7. PubMed ID: 15025461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.
    Gas-Pascual E; Berna A; Bach TJ; Schaller H
    PLoS One; 2014; 9(10):e109156. PubMed ID: 25343375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.
    Andre CM; Legay S; Deleruelle A; Nieuwenhuizen N; Punter M; Brendolise C; Cooney JM; Lateur M; Hausman JF; Larondelle Y; Laing WA
    New Phytol; 2016 Sep; 211(4):1279-94. PubMed ID: 27214242
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the active site of vertebrate oxidosqualene cyclase.
    Abe I; Prestwich GD
    Lipids; 1995 Mar; 30(3):231-4. PubMed ID: 7791531
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation.
    Matsuda SP; Darr LB; Hart EA; Herrera JB; McCann KE; Meyer MM; Pang J; Schepmann HG
    Org Lett; 2000 Jul; 2(15):2261-3. PubMed ID: 10930258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro susceptibility of fungi to acyclic inhibitors of 2,3-oxidosqualene cyclases.
    Airaudi D; Ceruti M; Bianco C; Filipello Marchisio V
    Mycoses; 1996; 39(1-2):51-6. PubMed ID: 8786759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome analysis and functional characterization of oxidosqualene cyclases of the arjuna triterpene saponin pathway.
    Srivastava G; Sandeep ; Garg A; Misra RC; Chanotiya CS; Ghosh S
    Plant Sci; 2020 Mar; 292():110382. PubMed ID: 32005387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. β-Amyrin synthase from Euphorbia tirucalli. Steric bulk, not the π-electrons of Phe, at position 474 has a key role in affording the correct folding of the substrate to complete the normal polycyclization cascade.
    Ito R; Masukawa Y; Nakada C; Amari K; Nakano C; Hoshino T
    Org Biomol Chem; 2014 Jun; 12(23):3836-46. PubMed ID: 24695673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preferential cyclization of 2,3(S):22(S),23-dioxidosqualene by mammalian 2,3-oxidosqualene-lanosterol cyclase.
    Boutaud O; Dolis D; Schuber F
    Biochem Biophys Res Commun; 1992 Oct; 188(2):898-904. PubMed ID: 1445330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of the 1,2-rearrangement process by oxidosqualene cyclases during triterpene biosynthesis.
    Takase S; Saga Y; Kurihara N; Naraki S; Kuze K; Nakata G; Araki T; Kushiro T
    Org Biomol Chem; 2015 Jul; 13(26):7331-6. PubMed ID: 26058429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stereospecific syntheses of trans-vinyldioxidosqualene and 3-hydroxysulfide derivatives, as potent and time-dependent 2,3-oxidosqualene cyclase inhibitors.
    Viola F; Balliano G; Milla P; Cattel L; Rocco F; Ceruti M
    Bioorg Med Chem; 2000 Jan; 8(1):223-32. PubMed ID: 10968281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea.
    Calegario G; Pollier J; Arendt P; de Oliveira LS; Thompson C; Soares AR; Pereira RC; Goossens A; Thompson FL
    PLoS One; 2016; 11(11):e0165954. PubMed ID: 27832119
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba.
    Sandeep ; Misra RC; Chanotiya CS; Mukhopadhyay P; Ghosh S
    New Phytol; 2019 Apr; 222(1):408-424. PubMed ID: 30472753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Divergent evolution of oxidosqualene cyclases in plants.
    Xue Z; Duan L; Liu D; Guo J; Ge S; Dicks J; ÓMáille P; Osbourn A; Qi X
    New Phytol; 2012 Mar; 193(4):1022-1038. PubMed ID: 22150097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli.
    Takemura M; Tanaka R; Misawa N
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6615-6625. PubMed ID: 28710558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae.
    Shi Z; Buntel CJ; Griffin JH
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7370-4. PubMed ID: 8041797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthetic Mechanism of Lanosterol: Cyclization.
    Chen N; Wang S; Smentek L; Hess BA; Wu R
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8693-6. PubMed ID: 26069216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potent anti-Trypanosoma cruzi activities of oxidosqualene cyclase inhibitors.
    Buckner FS; Griffin JH; Wilson AJ; Van Voorhis WC
    Antimicrob Agents Chemother; 2001 Apr; 45(4):1210-5. PubMed ID: 11257036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.