These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 1510979)

  • 21. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals.
    Sanii LS; El-Sayed MA
    Photochem Photobiol; 2005; 81(6):1356-60. PubMed ID: 16097857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 13C NMR study on conformation and dynamics of the transmembrane alpha-helices, loops, and C-terminus of [3-13C]Ala-labeled bacteriorhodopsin.
    Tuzi S; Naito A; Saitô H
    Biochemistry; 1994 Dec; 33(50):15046-52. PubMed ID: 7999762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin.
    Creuzet F; McDermott A; Gebhard R; van der Hoef K; Spijker-Assink MB; Herzfeld J; Lugtenburg J; Levitt MH; Griffin RG
    Science; 1991 Feb; 251(4995):783-6. PubMed ID: 1990439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes.
    Moltke S; Nevzorov AA; Sakai N; Wallat I; Job C; Nakanishi K; Heyn MP; Brown MF
    Biochemistry; 1998 Aug; 37(34):11821-35. PubMed ID: 9718305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy.
    Patzelt H; Simon B; terLaak A; Kessler B; Kühne R; Schmieder P; Oesterhelt D; Oschkinat H
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9765-70. PubMed ID: 12119389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of photo-intermediates in the photo-reaction pathways of a bacteriorhodopsin Y185F mutant using in situ photo-irradiation solid-state NMR spectroscopy.
    Oshima K; Shigeta A; Makino Y; Kawamura I; Okitsu T; Wada A; Tuzi S; Iwasa T; Naito A
    Photochem Photobiol Sci; 2015 Sep; 14(9):1694-702. PubMed ID: 26169449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A covalent link between the chromophore and the protein backbone of bacteriorhodopsin is not required for forming a photochemically active pigment analogous to the wild type.
    Friedman N; Druckmann S; Lanyi J; Needleman R; Lewis A; Ottolenghi M; Sheves M
    Biochemistry; 1994 Mar; 33(8):1971-6. PubMed ID: 8117653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base.
    Walter TJ; Braiman MS
    Biochemistry; 1994 Feb; 33(7):1724-33. PubMed ID: 8110775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacteriorhodopsin's M412 intermediate contains a 13-cis, 14-s-trans, 15-anti-retinal Schiff base chromophore.
    Ames JB; Fodor SP; Gebhard R; Raap J; van den Berg EM; Lugtenburg J; Mathies RA
    Biochemistry; 1989 May; 28(9):3681-7. PubMed ID: 2751988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-distance effects of site-directed mutations on backbone conformation in bacteriorhodopsin from solid state NMR of [1-13C]Val-labeled proteins.
    Tanio M; Inoue S; Yokota K; Seki T; Tuzi S; Needleman R; Lanyi JK; Naito A; Saitô H
    Biophys J; 1999 Jul; 77(1):431-42. PubMed ID: 10388769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water.
    Nina M; Roux B; Smith JC
    Biophys J; 1995 Jan; 68(1):25-39. PubMed ID: 7711248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural investigation of the active site in bacteriorhodopsin: geometric constraints on the roles of Asp-85 and Asp-212 in the proton-pumping mechanism from solid state NMR.
    Griffiths JM; Bennett AE; Engelhard M; Siebert F; Raap J; Lugtenburg J; Herzfeld J; Griffin RG
    Biochemistry; 2000 Jan; 39(2):362-71. PubMed ID: 10630997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR.
    Mak-Jurkauskas ML; Bajaj VS; Hornstein MK; Belenky M; Griffin RG; Herzfeld J
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):883-8. PubMed ID: 18195364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate.
    Maeda A; Gennis RB; Balashov SP; Ebrey TG
    Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromophore structure in bacteriorhodopsin's N intermediate: implications for the proton-pumping mechanism.
    Fodor SPA; Ames JB; Gebhard R; van den Berg EMM; Stoeckenius W; Lugtenburg J; Mathies RA
    Biochemistry; 1988 Sep; 27(18):7097-101. PubMed ID: 2848578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.