BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1510981)

  • 1. Tryptophan contributions to the unusual circular dichroism of fd bacteriophage.
    Arnold GE; Day LA; Dunker AK
    Biochemistry; 1992 Sep; 31(34):7948-56. PubMed ID: 1510981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet absorbance and circular dichroism of Pf1 virus: nucleotide/subunit ratio of unity, hyperchromic tyrosines and DNA bases, and high helicity in the subunits.
    Kostrikis LG; Liu DJ; Day LA
    Biochemistry; 1994 Feb; 33(7):1694-703. PubMed ID: 8110771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies.
    Williams MN
    J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the near-ultraviolet circular dichroic spectra of staphylococcal enterotoxins A, B and C.
    Spero L
    Biochim Biophys Acta; 1981 Dec; 671(2):193-20. PubMed ID: 7326263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of the tryptophan residues of wheat-germ agglutinin. Effect on fluorescence and saccharide-binding properties.
    Privat JP; Lotan R; Bouchard P; Sharon N; Monsigny M
    Eur J Biochem; 1976 Sep; 68(2):563-72. PubMed ID: 976273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes accompanying chloroform-induced contraction of the filamentous phage fd.
    Roberts LM; Dunker AK
    Biochemistry; 1993 Oct; 32(39):10479-88. PubMed ID: 8399194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins.
    Woody RW
    Eur Biophys J; 1994; 23(4):253-62. PubMed ID: 7805627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tryptophan in the spectral and catalytic properties of the copper enzyme, galactose oxidase.
    Kosman DJ; Ettinger MJ; Bereman RD; Giordano RS
    Biochemistry; 1977 Apr; 16(8):1597-601. PubMed ID: 192267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and organization of bacteriophage Pf3 probed by Raman and ultraviolet resonance Raman spectroscopy.
    Wen ZQ; Overman SA; Bondre P; Thomas GJ
    Biochemistry; 2001 Jan; 40(2):449-58. PubMed ID: 11148039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-UV circular dichroism and UV resonance Raman spectra of tryptophan residues as a structural marker of proteins.
    Nagatomo S; Nagai M; Ogura T; Kitagawa T
    J Phys Chem B; 2013 Aug; 117(32):9343-53. PubMed ID: 23863193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of polygalacturonase-II from Aspergillus carbonarius--a spectroscopic study.
    Devi NA; Rao AG
    Biochem Mol Biol Int; 1998 Jan; 44(1):79-87. PubMed ID: 9503150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan residues of the gamma subunit of 7S nerve growth factor: intrinsic fluorescence, solute quenching, and N-bromosuccinimide oxidation.
    Rao AG; Neet KE
    Biochemistry; 1982 Dec; 21(26):6843-50. PubMed ID: 7159567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and interactions of the single-stranded DNA genome of filamentous virus fd: investigation by ultraviolet resonance raman spectroscopy.
    Wen ZQ; Overman SA; Thomas GJ
    Biochemistry; 1997 Jun; 36(25):7810-20. PubMed ID: 9201924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation.
    Aubrey KL; Thomas GJ
    Biophys J; 1991 Dec; 60(6):1337-49. PubMed ID: 1777561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential conformational environment of tryptophan in epsilon native prototoxin and active toxin from Clostridium perfringens type D.
    Kumar A; Kumar S; Sarma Dagger PV; Sharma Double Dagger AK
    J Biochem Mol Biol Biophys; 2002 Apr; 6(2):147-50. PubMed ID: 12186772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of human acidic fibroblast growth factor and its interaction with heparin.
    Copeland RA; Ji H; Halfpenny AJ; Williams RW; Thompson KC; Herber WK; Thomas KA; Bruner MW; Ryan JA; Marquis-Omer D
    Arch Biochem Biophys; 1991 Aug; 289(1):53-61. PubMed ID: 1716876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation of tryptophan-26 in coat protein subunits of the filamentous virus Ff by polarized Raman microspectroscopy.
    Tsuboi M; Overman SA; Thomas GJ
    Biochemistry; 1996 Aug; 35(32):10403-10. PubMed ID: 8756696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium unfolding of yeast phosphoglycerate kinase and its mutants lacking one or both native tryptophans: a circular dichroism and steady-state and time-resolved fluorescence study.
    Szpikowska BK; Beechem JM; Sherman MA; Mas MT
    Biochemistry; 1994 Mar; 33(8):2217-25. PubMed ID: 8117679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational transitions in Pf3 and their implications for the structure and assembly of filamentous bacterial viruses.
    Thomas GJ; Day LA
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2962-6. PubMed ID: 6789326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical modification of tryptophan residues of alpha-mannosidase from Phaseolus vulgaris.
    Paus E
    Biochim Biophys Acta; 1978 Apr; 533(2):446-56. PubMed ID: 417737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.