These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1510985)

  • 1. Influence of chromatin folding on transcription initiation and elongation by RNA polymerase III.
    Hansen JC; Wolffe AP
    Biochemistry; 1992 Sep; 31(34):7977-88. PubMed ID: 1510985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for histones H2A/H2B in chromatin folding and transcriptional repression.
    Hansen JC; Wolffe AP
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2339-43. PubMed ID: 8134397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin.
    Tomaszewski R; Mogielnicka E; Jerzmanowski A
    Nucleic Acids Res; 1998 Dec; 26(24):5596-601. PubMed ID: 9837988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro.
    Tomaszewski R; Jerzmanowski A
    Nucleic Acids Res; 1997 Feb; 25(3):458-66. PubMed ID: 9016582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosomes inhibit both transcriptional initiation and elongation by RNA polymerase III in vitro.
    Morse RH
    EMBO J; 1989 Aug; 8(8):2343-51. PubMed ID: 2792088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase.
    O'Neill TE; Roberge M; Bradbury EM
    J Mol Biol; 1992 Jan; 223(1):67-78. PubMed ID: 1731087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of histone H1 onto reconstituted nucleosome arrays inhibits both initiation and elongation of transcripts by T7 RNA polymerase.
    O'Neill TE; Meersseman G; Pennings S; Bradbury EM
    Nucleic Acids Res; 1995 Mar; 23(6):1075-82. PubMed ID: 7731795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III.
    Tse C; Sera T; Wolffe AP; Hansen JC
    Mol Cell Biol; 1998 Aug; 18(8):4629-38. PubMed ID: 9671473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective and accurate transcription of the Xenopus laevis 5S RNA genes in isolated chromatin by purified RNA polymerase III.
    Parker CS; Roeder RG
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):44-8. PubMed ID: 264693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro transcription of the c-myc first exon may be influenced by the extent of chromatin assembly.
    Nguyen TP; Kmiec EB
    Mol Cell Biochem; 1993 Mar; 120(1):33-41. PubMed ID: 8459802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription of cloned Xenopus 5S RNA genes by X. laevis RNA polymerase III in reconstituted systems.
    Ng SY; Parker CS; Roeder RG
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):136-40. PubMed ID: 284325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing.
    Izban MG; Luse DS
    Genes Dev; 1991 Apr; 5(4):683-96. PubMed ID: 2010092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase.
    Studitsky VM; Kassavetis GA; Geiduschek EP; Felsenfeld G
    Science; 1997 Dec; 278(5345):1960-3. PubMed ID: 9395401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the transcription potential of nascent chromatin by chromosomal proteins HMG-14/-17 is coupled to nucleosome assembly and not DNA synthesis.
    Weigmann N; Trieschmann L; Bustin M
    DNA Cell Biol; 1997 Oct; 16(10):1207-16. PubMed ID: 9364931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone acetylation: influence on transcription, nucleosome mobility and positioning, and linker histone-dependent transcriptional repression.
    Ura K; Kurumizaka H; Dimitrov S; Almouzni G; Wolffe AP
    EMBO J; 1997 Apr; 16(8):2096-107. PubMed ID: 9155035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin.
    Felts SJ; Weil PA; Chalkley R
    Mol Cell Biol; 1990 May; 10(5):2390-401. PubMed ID: 2183033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone H1 binding does not inhibit transcription of nucleosomal Xenopus laevis somatic 5S rRNA templates.
    Howe L; Itoh T; Katagiri C; Ausió J
    Biochemistry; 1998 May; 37(20):7077-82. PubMed ID: 9585517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays.
    Horn PJ; Crowley KA; Carruthers LM; Hansen JC; Peterson CL
    Nat Struct Biol; 2002 Mar; 9(3):167-71. PubMed ID: 11836537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the RNA polymerase I transcription complex to its promoter can modify positioning of downstream nucleosomes assembled in vitro.
    Georgel P; Demeler B; Terpening C; Paule MR; van Holde KE
    J Biol Chem; 1993 Jan; 268(3):1947-54. PubMed ID: 8420969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription complex disruption caused by a transition in chromatin structure.
    Almouzni G; Méchali M; Wolffe AP
    Mol Cell Biol; 1991 Feb; 11(2):655-65. PubMed ID: 1990277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.