These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15109868)

  • 1. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone).
    Williamson MR; Chang HI; Coombes AG
    Biomaterials; 2004 Sep; 25(20):5053-60. PubMed ID: 15109868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precipitation casting of drug-loaded microporous PCL matrices: incorporation of progesterone by co-dissolution.
    Chang HI; Williamson MR; Perrie Y; Coombes AG
    J Control Release; 2005 Sep; 106(3):263-72. PubMed ID: 15993508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release of an antibiotic, gentamicin sulphate, from gravity spun polycaprolactone fibers.
    Chang HI; Lau YC; Yan C; Coombes AG
    J Biomed Mater Res A; 2008 Jan; 84(1):230-7. PubMed ID: 17607742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2.
    Rai B; Teoh SH; Hutmacher DW; Cao T; Ho KH
    Biomaterials; 2005 Jun; 26(17):3739-48. PubMed ID: 15621264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravity spinning of polycaprolactone fibres for applications in tissue engineering.
    Williamson MR; Coombes AG
    Biomaterials; 2004 Feb; 25(3):459-65. PubMed ID: 14585694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma.
    Rai B; Teoh SH; Ho KH
    J Control Release; 2005 Oct; 107(2):330-42. PubMed ID: 16085332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.
    Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD
    Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery.
    Wang Y; Chang HI; Wertheim DF; Jones AS; Jackson C; Coombes AG
    Biomaterials; 2007 Nov; 28(31):4619-27. PubMed ID: 17659772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier.
    Hyun H; Kim YH; Song IB; Lee JW; Kim MS; Khang G; Park K; Lee HB
    Biomacromolecules; 2007 Apr; 8(4):1093-100. PubMed ID: 17326678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen-coated polycaprolactone microparticles as a controlled drug delivery system.
    Aishwarya S; Mahalakshmi S; Sehgal PK
    J Microencapsul; 2008 Aug; 25(5):298-306. PubMed ID: 18465301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin.
    Dai NT; Williamson MR; Khammo N; Adams EF; Coombes AG
    Biomaterials; 2004 Aug; 25(18):4263-71. PubMed ID: 15046916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors.
    Bilensoy E; Sarisozen C; Esendağli G; Doğan AL; Aktaş Y; Sen M; Mungan NA
    Int J Pharm; 2009 Apr; 371(1-2):170-6. PubMed ID: 19135514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using TEM to couple transient protein distribution and release for PLGA microparticles for potential use as vaccine delivery vehicles.
    Zhao A; Rodgers VG
    J Control Release; 2006 Jun; 113(1):15-22. PubMed ID: 16707186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents.
    Jiang H; Hu Y; Li Y; Zhao P; Zhu K; Chen W
    J Control Release; 2005 Nov; 108(2-3):237-43. PubMed ID: 16153737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin.
    Yadav AK; Mishra P; Jain S; Mishra P; Mishra AK; Agrawal GP
    J Drug Target; 2008 Jul; 16(6):464-78. PubMed ID: 18604659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids.
    Dhanaraju MD; Gopinath D; Ahmed MR; Jayakumar R; Vamsadhara C
    J Biomed Mater Res A; 2006 Jan; 76(1):63-72. PubMed ID: 16108044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-CT in drug delivery.
    Wang Y; Wertheim DF; Jones AS; Coombes AG
    Eur J Pharm Biopharm; 2010 Jan; 74(1):41-9. PubMed ID: 19465120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites.
    Mohammadi MS; Ahmed I; Muja N; Almeida S; Rudd CD; Bureau MN; Nazhat SN
    Acta Biomater; 2012 Apr; 8(4):1616-26. PubMed ID: 22248526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.