These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 15110146)

  • 21. The calcium/calmodulin/kinase system and arrhythmogenic afterdepolarizations in bradycardia-related acquired long-QT syndrome.
    Qi X; Yeh YH; Chartier D; Xiao L; Tsuji Y; Brundel BJ; Kodama I; Nattel S
    Circ Arrhythm Electrophysiol; 2009 Jun; 2(3):295-304. PubMed ID: 19808480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discordant calcium transient and action potential alternans in a canine left-ventricular myocyte.
    Armoundas AA
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2340-4. PubMed ID: 19497812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mechanism distinct from the L-type Ca current or Na-Ca exchange contributes to Ca entry in rat ventricular myocytes.
    Kupittayanant P; Trafford AW; Díaz ME; Eisner DA
    Cell Calcium; 2006 May; 39(5):417-23. PubMed ID: 16563501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid stimulation causes electrical remodeling in cultured atrial myocytes.
    Yang Z; Shen W; Rottman JN; Wikswo JP; Murray KT
    J Mol Cell Cardiol; 2005 Feb; 38(2):299-308. PubMed ID: 15698836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phospholamban gene ablation improves calcium transients but not cardiac function in a heart failure model.
    Janczewski AM; Zahid M; Lemster BH; Frye CS; Gibson G; Higuchi Y; Kranias EG; Feldman AM; McTiernan CF
    Cardiovasc Res; 2004 Jun; 62(3):468-80. PubMed ID: 15158139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms underlying adaptation of action potential duration by pacing rate in rat myocytes.
    Sallé L; Kharche S; Zhang H; Brette F
    Prog Biophys Mol Biol; 2008; 96(1-3):305-20. PubMed ID: 17869329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction.
    Louch WE; Mørk HK; Sexton J; Strømme TA; Laake P; Sjaastad I; Sejersted OM
    J Physiol; 2006 Jul; 574(Pt 2):519-33. PubMed ID: 16709642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca2+ currents in cardiac myocytes: Old story, new insights.
    Brette F; Leroy J; Le Guennec JY; Sallé L
    Prog Biophys Mol Biol; 2006; 91(1-2):1-82. PubMed ID: 16503439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release.
    Harris DM; Mills GD; Chen X; Kubo H; Berretta RM; Votaw VS; Santana LF; Houser SR
    Circ Res; 2005 Mar; 96(5):543-50. PubMed ID: 15705962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Action potential duration, rate of stimulation, and intracellular sodium.
    Carmeliet E
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S2-S7. PubMed ID: 16686677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical simulations of the effects of altered AMP-kinase activity on I and the action potential in rat ventricle.
    Bazzazi H; Clark RB; Giles WR
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S162-S168. PubMed ID: 16686674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling.
    Bito V; Heinzel FR; Biesmans L; Antoons G; Sipido KR
    Cardiovasc Res; 2008 Jan; 77(2):315-24. PubMed ID: 18006436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling of calcium handling in airway myocytes.
    Roux E; Noble PJ; Noble D; Marhl M
    Prog Biophys Mol Biol; 2006; 90(1-3):64-87. PubMed ID: 15982722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered heart rate and sinoatrial node function in mice lacking the cAMP regulator phosphoinositide 3-kinase-gamma.
    Rose RA; Kabir MG; Backx PH
    Circ Res; 2007 Dec; 101(12):1274-82. PubMed ID: 17975110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular mechanisms of cardiac mechano-electric feedback in a mathematical model.
    Kohl P; Day K; Noble D
    Can J Cardiol; 1998 Jan; 14(1):111-9. PubMed ID: 9487283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental regulation of intracellular calcium homeostasis in early cardiac myocytes.
    Fu JD; Yang HT
    Sheng Li Xue Bao; 2006 Apr; 58(2):95-103. PubMed ID: 16628354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Contractile and electrical activity of fish myocardial cells during changes of membrane and intracellular transport of calcium ions].
    Orlov RS; Vedernikov IuP
    Fiziol Zh SSSR Im I M Sechenova; 1974 May; 60(5):778-83. PubMed ID: 4424877
    [No Abstract]   [Full Text] [Related]  

  • 38. Electrical defects of the transverse-axial tubular system in cardiac diseases.
    Crocini C; Ferrantini C; Coppini R; Sacconi L
    J Physiol; 2017 Jun; 595(12):3815-3822. PubMed ID: 27981580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical restitution hysteresis: good memory or delayed response?
    Berger RD
    Circ Res; 2004 Mar; 94(5):567-9. PubMed ID: 15031267
    [No Abstract]   [Full Text] [Related]  

  • 40. Remodeled cardiac calcium channels.
    Pitt GS; Dun W; Boyden PA
    J Mol Cell Cardiol; 2006 Sep; 41(3):373-88. PubMed ID: 16901502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.