These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15110261)

  • 1. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress.
    Kocheva K; Lambrev P; Georgiev G; Goltsev V; Karabaliev M
    Bioelectrochemistry; 2004 Jun; 63(1-2):121-4. PubMed ID: 15110261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress.
    Nason MA; Farrar J; Bartlett D
    Pest Manag Sci; 2007 Dec; 63(12):1191-200. PubMed ID: 17912684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves.
    Shabala S; Shabala L; Van Volkenburgh E; Newman I
    J Exp Bot; 2005 May; 56(415):1369-78. PubMed ID: 15809285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling.
    Hao GP; Xing Y; Zhang JH
    J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species.
    Naumann JC; Young DR; Anderson JE
    Physiol Plant; 2007 Nov; 131(3):422-33. PubMed ID: 18251881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll a fluorescence--A useful tool for the early detection of temperature stress in spring barley (Hordeum vulgare L.).
    Kalaji HM; Bosa K; Kościelniak J; Hossain Z
    OMICS; 2011 Dec; 15(12):925-34. PubMed ID: 22106950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark.
    Nauš J; Šmecko S; Špundová M
    Photosynth Res; 2016 Aug; 129(2):217-25. PubMed ID: 27372712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances.
    Stroch M; Cajánek M; Kalina J; Spunda V
    J Photochem Photobiol B; 2004 Jul; 75(1-2):41-50. PubMed ID: 15246349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyphosate uncouples gas exchange and chlorophyll fluorescence.
    Olesen CF; Cedergreen N
    Pest Manag Sci; 2010 May; 66(5):536-42. PubMed ID: 20127759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves.
    Koroleva OA; Tomos AD; Farrar J; Pollock CJ
    Planta; 2002 Jun; 215(2):210-9. PubMed ID: 12029470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance.
    Oukarroum A; Schansker G; Strasser RJ
    Physiol Plant; 2009 Oct; 137(2):188-99. PubMed ID: 19719481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.
    Melgar JC; Guidi L; Remorini D; Agati G; Degl'innocenti E; Castelli S; Camilla Baratto M; Faraloni C; Tattini M
    Tree Physiol; 2009 Sep; 29(9):1187-98. PubMed ID: 19608597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery.
    Gallé A; Feller U
    Physiol Plant; 2007 Nov; 131(3):412-21. PubMed ID: 18251880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions.
    Bartoli CG; Gomez F; Gergoff G; Guiamét JJ; Puntarulo S
    J Exp Bot; 2005 May; 56(415):1269-76. PubMed ID: 15781442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus.
    Tymczyszyn EE; Gómez-Zavaglia A; Disalvo EA
    Arch Biochem Biophys; 2005 Nov; 443(1-2):66-73. PubMed ID: 16256066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in foliar proline concentration of osmotically stressed barley.
    Kocheva KV; Georgiev GI
    Z Naturforsch C J Biosci; 2008; 63(1-2):101-4. PubMed ID: 18386497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress.
    Porcel R; Ruiz-Lozano JM
    J Exp Bot; 2004 Aug; 55(403):1743-50. PubMed ID: 15208335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polypeptide changes induced by salt stress, water deficit, and osmotic stress in barley roots: a comparison using two-dimensional gel electrophoresis.
    Hurkman WJ; Tanaka CK
    Electrophoresis; 1988 Nov; 9(11):781-7. PubMed ID: 3250880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf movements and photoinhibition in relation to water stress in field-grown beans.
    Pastenes C; Pimentel P; Lillo J
    J Exp Bot; 2005 Jan; 56(411):425-33. PubMed ID: 15596474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.