BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 15110747)

  • 21. Inverse regulation of rotation of F1-ATPase by the mutation at the regulatory region on the gamma subunit of chloroplast ATP synthase.
    Ueoka-Nakanishi H; Nakanishi Y; Konno H; Motohashi K; Bald D; Hisabori T
    J Biol Chem; 2004 Apr; 279(16):16272-7. PubMed ID: 14747461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit.
    Konno H; Murakami-Fuse T; Fujii F; Koyama F; Ueoka-Nakanishi H; Pack CG; Kinjo M; Hisabori T
    EMBO J; 2006 Oct; 25(19):4596-604. PubMed ID: 16977308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the F0F1-ATP synthase: the conformation of subunit epsilon might be determined by directionality of subunit gamma rotation.
    Feniouk BA; Junge W
    FEBS Lett; 2005 Sep; 579(23):5114-8. PubMed ID: 16154570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spinach chloroplast coupling factor CF1-alpha 3 beta 3 core complex: structure, stability, and catalytic properties.
    Sokolov M; Gromet-Elhanan Z
    Biochemistry; 1996 Jan; 35(4):1242-8. PubMed ID: 8573579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1.
    Digel JG; Moore ND; McCarty RE
    Biochemistry; 1998 Dec; 37(49):17209-15. PubMed ID: 9860834
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biophysics and bioinformatics reveal structural differences of the two peripheral stalk subunits in chloroplast ATP synthase.
    Poetsch A; Berzborn RJ; Heberle J; Link TA; Dencher NA; Seelert H
    J Biochem; 2007 Mar; 141(3):411-20. PubMed ID: 17283010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit.
    McCallum JR; McCarty RE
    Biochim Biophys Acta; 2007 Jul; 1767(7):974-9. PubMed ID: 17559799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular evolution of the modulator of chloroplast ATP synthase: origin of the conformational change dependent regulation.
    Hisabori T; Ueoka-Nakanishi H; Konno H; Koyama F
    FEBS Lett; 2003 Jun; 545(1):71-5. PubMed ID: 12788494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis of redox modulation on chloroplast ATP synthase.
    Yang JH; Williams D; Kandiah E; Fromme P; Chiu PL
    Commun Biol; 2020 Sep; 3(1):482. PubMed ID: 32879423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling proton movement to ATP synthesis in the chloroplast ATP synthase.
    Richter ML; Samra HS; He F; Giessel AJ; Kuczera KK
    J Bioenerg Biomembr; 2005 Dec; 37(6):467-73. PubMed ID: 16691485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch.
    Kim Y; Konno H; Sugano Y; Hisabori T
    J Biol Chem; 2011 Mar; 286(11):9071-8. PubMed ID: 21193405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. gammaepsilon Sub-complex of thermophilic ATP synthase has the ability to bind ATP.
    Iizuka S; Kato S; Yoshida M; Kato-Yamada Y
    Biochem Biophys Res Commun; 2006 Nov; 349(4):1368-71. PubMed ID: 16982032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissipation of the proton electrochemical gradient in chloroplasts promotes the oxidation of ATP synthase by thioredoxin-like proteins.
    Sekiguchi T; Yoshida K; Wakabayashi KI; Hisabori T
    J Biol Chem; 2022 Nov; 298(11):102541. PubMed ID: 36174673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional consequences of N- or C-terminal deletions of the delta subunit of chloroplast ATP synthase.
    Ni ZL; Shi XB; Wei JM
    Biochemistry; 2004 Mar; 43(8):2272-8. PubMed ID: 14979723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase.
    Iino R; Hasegawa R; Tabata KV; Noji H
    J Biol Chem; 2009 Jun; 284(26):17457-64. PubMed ID: 19411254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1.
    Yagi H; Kajiwara N; Tanaka H; Tsukihara T; Kato-Yamada Y; Yoshida M; Akutsu H
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11233-8. PubMed ID: 17581881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.
    Stocker A; Keis S; Vonck J; Cook GM; Dimroth P
    Structure; 2007 Aug; 15(8):904-14. PubMed ID: 17697996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural analysis of the regulatory dithiol-containing domain of the chloroplast ATP synthase gamma subunit.
    Samra HS; Gao F; He F; Hoang E; Chen Z; Gegenheimer PA; Berrie CL; Richter ML
    J Biol Chem; 2006 Oct; 281(41):31041-9. PubMed ID: 16895914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis.
    Yasuno T; Muneyuki E; Yoshida M; Kato-Yamada Y
    Biochem Biophys Res Commun; 2009 Dec; 390(2):230-4. PubMed ID: 19785990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.