These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15110788)

  • 41. Silencing efficacy prediction: a retrospective study on target mRNA features.
    Pascut D; Bedogni G; Tiribelli C
    Biosci Rep; 2015 Mar; 35(2):. PubMed ID: 25702798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ribozyme- and siRNA-mediated mRNA degradation: a general introduction.
    Sioud M
    Methods Mol Biol; 2004; 252():1-8. PubMed ID: 15017038
    [No Abstract]   [Full Text] [Related]  

  • 43. Coupling of RNAi-mediated target downregulation with gene replacement.
    Kim DH; Rossi JJ
    Antisense Nucleic Acid Drug Dev; 2003; 13(3):151-5. PubMed ID: 12954115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Is the Efficiency of RNA Silencing Evolutionarily Regulated?
    Ui-Tei K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor.
    Holen T; Amarzguioui M; Wiiger MT; Babaie E; Prydz H
    Nucleic Acids Res; 2002 Apr; 30(8):1757-66. PubMed ID: 11937629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenylpyrrolocytosine as an unobtrusive base modification for monitoring activity and cellular trafficking of siRNA.
    Wahba AS; Azizi F; Deleavey GF; Brown C; Robert F; Carrier M; Kalota A; Gewirtz AM; Pelletier J; Hudson RH; Damha MJ
    ACS Chem Biol; 2011 Sep; 6(9):912-9. PubMed ID: 21667942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An effective method for selecting siRNA target sequences in mammalian cells.
    Takasaki S; Kotani S; Konagaya A
    Cell Cycle; 2004 Jun; 3(6):790-5. PubMed ID: 15118413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Precise and efficient siRNA design: a key point in competent gene silencing.
    Fakhr E; Zare F; Teimoori-Toolabi L
    Cancer Gene Ther; 2016 Apr; 23(4):73-82. PubMed ID: 26987292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient RNA interference depends on global context of the target sequence: quantitative analysis of silencing efficiency using Eulerian graph representation of siRNA.
    Pancoska P; Moravek Z; Moll UM
    Nucleic Acids Res; 2004; 32(4):1469-79. PubMed ID: 14993466
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.
    Gredell JA; Berger AK; Walton SP
    Biotechnol Bioeng; 2008 Jul; 100(4):744-55. PubMed ID: 18306428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of mRNA features on siRNA interference efficacy.
    Liu Y; Chang Y; Zhang C; Wei Q; Chen J; Chen H; Xu D
    J Bioinform Comput Biol; 2013 Jun; 11(3):1341004. PubMed ID: 23796181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study on the fundamental factors determining the efficacy of siRNAs with high C/G contents.
    Liao JY; Yin JQ; Chen F; Liu TG; Yue JC
    Cell Mol Biol Lett; 2008; 13(2):283-302. PubMed ID: 18197393
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of metabolically stable 5'-phosphate analogs that support single-stranded siRNA activity.
    Prakash TP; Lima WF; Murray HM; Li W; Kinberger GA; Chappell AE; Gaus H; Seth PP; Bhat B; Crooke ST; Swayze EE
    Nucleic Acids Res; 2015 Mar; 43(6):2993-3011. PubMed ID: 25753666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selecting effective siRNA target sequences for mammalian genes.
    Takasaki S; Kotani S; Konagaya A
    RNA Biol; 2005 Jan; 2(1):21-7. PubMed ID: 17132936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asymmetry in siRNA design.
    Grimm D
    Gene Ther; 2009 Jul; 16(7):827-9. PubMed ID: 19404320
    [No Abstract]   [Full Text] [Related]  

  • 56. Targeted delivery and enhanced gene-silencing activity of centrally modified folic acid-siRNA conjugates.
    Salim L; Islam G; Desaulniers JP
    Nucleic Acids Res; 2020 Jan; 48(1):75-85. PubMed ID: 31777918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. siRNA target site secondary structure predictions using local stable substructures.
    Heale BS; Soifer HS; Bowers C; Rossi JJ
    Nucleic Acids Res; 2005 Feb; 33(3):e30. PubMed ID: 15722476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing.
    Hong SW; Jiang Y; Kim S; Li CJ; Lee DK
    Nucleic Acid Ther; 2014 Jun; 24(3):192-8. PubMed ID: 24527979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hepatitis B Virus-Like Particle: Targeted Delivery of Plasmid Expressing Short Hairpin RNA for Silencing the
    Akwiditya MA; Yong CY; Yusof MT; Mariatulqabtiah AR; Ho KL; Tan WS
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33652577
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic chemical modifications of single stranded siRNAs significantly improved CTNNB1 mRNA silencing.
    Chang W; Pei Y; Guidry EN; Zewge D; Parish CA; Sherer EC; DiMuzio J; Zhang H; South VJ; Strapps WR; Sepp-Lorenzino L; Colletti SL; Stanton MG
    Bioorg Med Chem Lett; 2016 Sep; 26(18):4513-4517. PubMed ID: 27503684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.