BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15110948)

  • 1. Reduction of nitrogenase Fe protein from Azotobacter vinelandii by dithionite: quantitative and qualitative effects of nucleotides, temperature, pH and reaction buffer.
    Wilson PE; Bunker J; Lowery TJ; Watt GD
    Biophys Chem; 2004 May; 109(2):305-24. PubMed ID: 15110948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state kinetic studies of dithionite utilization, component protein interaction, and the formation of an oxidized iron protein intermediate during Azotobacter vinelandii nitrogenase catalysis.
    Johnson JL; Tolley AM; Erickson JA; Watt GD
    Biochemistry; 1996 Sep; 35(35):11336-42. PubMed ID: 8784188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductant-independent ATP hydrolysis catalyzed by homologous nitrogenase proteins from Azotobacter vinelandii and heterologous crosses with Clostridium pasteuranium.
    Larsen C; Christensen S; Watt GD
    Arch Biochem Biophys; 1995 Nov; 323(2):215-22. PubMed ID: 7487080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xanthene dyes as photochemical donors for the nitrogenase reaction.
    Druzhinin SY; Syrtsova LA; Denisov NN; Shkondina NI; Gak VY
    Biochemistry (Mosc); 1998 Aug; 63(8):996-1006. PubMed ID: 9767191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the MgATP and MgADP binding sites on the Fe protein of nitrogenase from Azotobacter vinelandii.
    Cordewener J; Haaker H; Van Ewijk P; Veeger C
    Eur J Biochem; 1985 May; 148(3):499-508. PubMed ID: 3873334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii.
    Duyvis MG; Wassink H; Haaker H
    Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene.
    McKenna CE; Simeonov AM; Eran H; Bravo-Leerabhandh M
    Biochemistry; 1996 Apr; 35(14):4502-14. PubMed ID: 8605200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and spectroscopic analysis of the inactivating effects of nitric oxide on the individual components of Azotobacter vinelandii nitrogenase.
    Hyman MR; Seefeldt LC; Morgan TV; Arp DJ; Mortenson LE
    Biochemistry; 1992 Mar; 31(11):2947-55. PubMed ID: 1312859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of MgATP-dependent iron chelation from the Fe-protein of the Azotobacter vinelandii nitrogenase complex. Evidence for two states.
    Deits TL; Howard JB
    J Biol Chem; 1989 Apr; 264(12):6619-28. PubMed ID: 2785107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of elementary steps of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA; Nadtochenko VA; Denisov NN; Timofeeva EA; Shkondina NI; Gak VY
    Biochemistry (Mosc); 2000 Oct; 65(10):1145-52. PubMed ID: 11092957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle.
    Duyvis MG; Wassink H; Haaker H
    Biochemistry; 1998 Dec; 37(50):17345-54. PubMed ID: 9860849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochim Biophys Acta; 1999 Jan; 1429(2):411-21. PubMed ID: 9989226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis.
    Jacobs D; Watt GD
    Biochemistry; 2013 Jul; 52(28):4791-9. PubMed ID: 23815521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state.
    Lowery TJ; Wilson PE; Zhang B; Bunker J; Harrison RG; Nyborg AC; Thiriot D; Watt GD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17131-6. PubMed ID: 17085583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reinvestigation of the pre-steady-state ATPase activity of the nitrogenase from Azotobacter vinelandii.
    Mensink RE; Wassink H; Haaker H
    Eur J Biochem; 1992 Sep; 208(2):289-94. PubMed ID: 1325902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-steady-state kinetics of nitrogenase from Azotobacter vinelandii. Evidence for an ATP-induced conformational change of the nitrogenase complex as part of the reaction mechanism.
    Duyvis MG; Wassink H; Haaker H
    J Biol Chem; 1996 Nov; 271(47):29632-6. PubMed ID: 8939894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature effects on the MgATP-induced electron transfer between the nitrogenase proteins from Azotobacter vinelandii.
    Mensink RE; Haaker H
    Eur J Biochem; 1992 Sep; 208(2):295-9. PubMed ID: 1521527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.