These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15110948)

  • 21. Hydrolysis of nucleoside triphosphates other than ATP by nitrogenase.
    Ryle MJ; Seefeldt LC
    J Biol Chem; 2000 Mar; 275(9):6214-9. PubMed ID: 10692415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of NO release by N1-nitrosomelatonin: nucleophilic attack versus reducing pathways.
    De Biase PM; Turjanski AG; Estrin DA; Doctorovich F
    J Org Chem; 2005 Jul; 70(15):5790-8. PubMed ID: 16018670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogenase proteins from Gluconacetobacter diazotrophicus, a sugarcane-colonizing bacterium.
    Fisher K; Newton WE
    Biochim Biophys Acta; 2005 Jun; 1750(2):154-65. PubMed ID: 15925553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The concentration of cellular nitrogenase proteins in Azotobacter vinelandii whole cells as determined by activity measurements and electron paramagnetic resonance spectroscopy.
    Jacobs D; Mitchell D; Watt GD
    Arch Biochem Biophys; 1995 Dec; 324(2):317-24. PubMed ID: 8554323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein.
    Sarma R; Barney BM; Hamilton TL; Jones A; Seefeldt LC; Peters JW
    Biochemistry; 2008 Dec; 47(49):13004-15. PubMed ID: 19006326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The photoreduction of nitrogenase.
    Druzhinin SYu ; Syrtsova LA; Uzenskaja AM; Likhtenstein GI
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):627-31. PubMed ID: 7680858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii.
    Hausinger RP; Howard JB
    J Biol Chem; 1983 Nov; 258(22):13486-92. PubMed ID: 6580291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton NMR investigation of the [4Fe--4S]1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes.
    Lanzilotta WN; Holz RC; Seefeldt LC
    Biochemistry; 1995 Dec; 34(48):15646-53. PubMed ID: 7495793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogenase of Klebsiella pneumoniae. Kinetic studies on the Fe protein involving reduction by sodium dithionite, the binding of MgADP and a conformation change that alters the reactivity of the 4Fe-4S centre.
    Ashby GA; Thorneley RN
    Biochem J; 1987 Sep; 246(2):455-65. PubMed ID: 3318808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox reactions in the Fe-As-O2 system.
    Johnston RB; Singer PC
    Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of all stages of electron transfer in nitrogenase in the presence of a photodonor.
    Syrtsova LA; Nadtochenko VA; Timofeeva EA
    Biochemistry (Mosc); 1998 Aug; 63(8):1007-13. PubMed ID: 9767192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants that form the all-ferrous redox state of the Fe protein.
    Erickson JA; Nyborg AC; Johnson JL; Truscott SM; Gunn A; Nordmeyer FR; Watt GD
    Biochemistry; 1999 Oct; 38(43):14279-85. PubMed ID: 10572002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of MgATP to the nitrogenase proteins from Azotobacter vinelandii.
    Cordewener J; Haaker H; Veeger C
    Eur J Biochem; 1983 Apr; 132(1):47-54. PubMed ID: 6601579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conformational mimic of the MgATP-bound "on state" of the nitrogenase iron protein.
    Sen S; Igarashi R; Smith A; Johnson MK; Seefeldt LC; Peters JW
    Biochemistry; 2004 Feb; 43(7):1787-97. PubMed ID: 14967020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 6.0-8.0 and 25 degrees C.
    Pham AN; Waite TD
    J Phys Chem A; 2008 Jun; 112(24):5395-405. PubMed ID: 18507361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogenase of Azotobacter chroococcum. Kinetics of the reduction of oxidized iron-protein by sodium dithionite.
    Thorneley RN; Yates MG; Lowe DJ
    Biochem J; 1976 Apr; 155(1):137-44. PubMed ID: 180978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ionic interactions in the nitrogenase complex. Properties of Fe-protein containing substitutions for Arg-100.
    Wolle D; Kim C; Dean D; Howard JB
    J Biol Chem; 1992 Feb; 267(6):3667-73. PubMed ID: 1740419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The vanadium- and molybdenum-containing nitrogenases of Azotobacter chroococcum. Comparison of mid-point potentials and kinetics of reduction by sodium dithionite of the iron proteins with bound magnesium adenosine 5'-diphosphate.
    Bergström J; Eady RR; Thorneley RN
    Biochem J; 1988 Apr; 251(1):165-9. PubMed ID: 3164616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the redox characteristics of ferrioxamine E.
    Kazmi SA; Shorter AL; McArdle JV; Ashiq U; Jamal RA
    Chem Biodivers; 2010 Mar; 7(3):656-65. PubMed ID: 20232334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.