These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 15110973)
1. Influence of trans-1,2-diaminocyclohexane structure and mixed carboxylic/phosphonic group combinations on samarium-153 chelation capacity and stability. Ouadi A; Loussouarn A; Morandeau L; Remaud P; Faivre-Chauvet A; Webb J; Gestin JF Eur J Med Chem; 2004 May; 39(5):467-72. PubMed ID: 15110973 [TBL] [Abstract][Full Text] [Related]
2. The effect of pyridinecarboxylate chelating groups on the stability and electronic relaxation of gadolinium complexes. Chatterton N; Gateau C; Mazzanti M; Pécaut J; Borel A; Helm L; Merbach A Dalton Trans; 2005 Mar; (6):1129-35. PubMed ID: 15739017 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and metal complexation properties of Ph-DTPA and Ph-TTHA: novel radionuclide chelating agents for use in nuclear medicine. Gouin SG; Gestin JF; Monrandeau L; Segat-Dioury F; Meslin JC; Deniaud D Org Biomol Chem; 2005 Feb; 3(3):454-61. PubMed ID: 15678183 [TBL] [Abstract][Full Text] [Related]
4. Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and acyclic ligands. Stimmel JB; Kull FC Nucl Med Biol; 1998 Feb; 25(2):117-25. PubMed ID: 9468026 [TBL] [Abstract][Full Text] [Related]
5. Coordination ability of trans-cyclohexane-1,2-diamine-N,N,N',N'-tetrakis(methylenephosphonic acid) towards lanthanide(III) ions. Gałezowska J; Janicki R; Mondry A; Burgada R; Bailly T; Lecouvey M; Kozłowski H Dalton Trans; 2006 Sep; (36):4384-94. PubMed ID: 16967123 [TBL] [Abstract][Full Text] [Related]
6. The highest water exchange rate ever measured for a Gd(III) chelate. Mato-Iglesias M; Platas-Iglesias C; Djanashvili K; Peters JA; Tóth E; Balogh E; Muller RN; Vander Elst L; de Blas A; Rodríguez-Blas T Chem Commun (Camb); 2005 Oct; (37):4729-31. PubMed ID: 16175307 [TBL] [Abstract][Full Text] [Related]
7. Acid-base and metal-ion-binding properties of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA), a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). An exercise on the quantification of isomeric complex equilibria in solution. Fernández-Botello A; Griesser R; Holý A; Moreno V; Sigel H Inorg Chem; 2005 Jul; 44(14):5104-17. PubMed ID: 15998039 [TBL] [Abstract][Full Text] [Related]
8. Improved in vivo stability of actinium-225 macrocyclic complexes. Deal KA; Davis IA; Mirzadeh S; Kennel SJ; Brechbiel MW J Med Chem; 1999 Jul; 42(15):2988-92. PubMed ID: 10425108 [TBL] [Abstract][Full Text] [Related]
9. Labeling conditions, in vitro properties and biodistributions of various Sn-labeled complexes. Yang Y; Luo S; Pu M; Wang W; Wang G; He J; Liu G; Bing W; Wei H Appl Radiat Isot; 2005 Apr; 62(4):597-603. PubMed ID: 15701415 [TBL] [Abstract][Full Text] [Related]
10. Structure investigations of dichloroaluminum benzoates: an unprecedented example of a monomeric aluminum complex with a chelating carboxylate ligand. Florjańczyk Z; Bury W; Zygadło-Monikowska E; Justyniak I; Balawender R; Lewiński J Inorg Chem; 2009 Dec; 48(23):10892-4. PubMed ID: 19877672 [TBL] [Abstract][Full Text] [Related]
11. 2,2'-Bipyrrolidine versus 1,2-diaminocyclohexane as chiral cores for helically wrapping diamine-diolate ligands. Sergeeva E; Kopilov J; Goldberg I; Kol M Inorg Chem; 2009 Sep; 48(17):8075-7. PubMed ID: 19715369 [TBL] [Abstract][Full Text] [Related]
12. 13- and 14-membered macrocyclic ligands containing methylcarboxylate or methylphosphonate pendant arms: chemical and biological evaluation of their (153)Sm and (166)Ho complexes as potential agents for therapy or bone pain palliation. Marques F; Gano L; Paula Campello M; Lacerda S; Santos I; Lima LM; Costa J; Antunes P; Delgado R J Inorg Biochem; 2006 Feb; 100(2):270-80. PubMed ID: 16387365 [TBL] [Abstract][Full Text] [Related]
13. Impact of the linker groups in bis(7-azaindol-1-yl) chelate ligands on structures and stability of Pt(N,N-L)R(2) complexes. Zhao SB; Liu GH; Song D; Wang S Dalton Trans; 2008 Dec; (48):6953-65. PubMed ID: 19050782 [TBL] [Abstract][Full Text] [Related]
14. H2CHXdedpa and H4CHXoctapa-chiral acyclic chelating ligands for (67/68)Ga and (111)In radiopharmaceuticals. Ramogida CF; Cawthray JF; Boros E; Ferreira CL; Patrick BO; Adam MJ; Orvig C Inorg Chem; 2015 Feb; 54(4):2017-31. PubMed ID: 25621728 [TBL] [Abstract][Full Text] [Related]
15. Racemic atropisomeric N,N-chelate ligands for recognizing chiral carboxylates via Zn(II) coordination: structure, fluorescence, and circular dichroism. McCormick TM; Wang S Inorg Chem; 2008 Nov; 47(21):10017-24. PubMed ID: 18831581 [TBL] [Abstract][Full Text] [Related]
16. Physical parameters and biological stability of yttrium(III) diethylenetriaminepentaacetic acid derivative conjugates. McMurry TJ; Pippin CG; Wu C; Deal KA; Brechbiel MW; Mirzadeh S; Gansow OA J Med Chem; 1998 Aug; 41(18):3546-9. PubMed ID: 9719608 [TBL] [Abstract][Full Text] [Related]
17. Pyridine-carboxylate complexes of platinum. Effect of N,O-chelate formation on model bifunctional DNA-DNA and DNA-protein interactions. Quintal SM; Qu Y; Quiroga AG; Moniodis J; Nogueira HI; Farrell N Inorg Chem; 2005 Jul; 44(15):5247-53. PubMed ID: 16022522 [TBL] [Abstract][Full Text] [Related]