BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15111036)

  • 1. Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater.
    Maraldo K; Dahllöf I
    Mar Pollut Bull; 2004 May; 48(9-10):894-901. PubMed ID: 15111036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrithiones as antifoulants: environmental fate and loss of toxicity.
    Turley PA; Fenn RJ; Ritter JC; Callow ME
    Biofouling; 2005; 21(1):31-40. PubMed ID: 16019389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variations in the effect of zinc pyrithione and copper pyrithione on pelagic phytoplankton communities.
    Maraldo K; Dahllöf I
    Aquat Toxicol; 2004 Aug; 69(2):189-98. PubMed ID: 15261454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione.
    Hjorth M; Dahllöf I; Forbes VE
    Aquat Toxicol; 2006 Apr; 77(1):105-15. PubMed ID: 16352351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater.
    Onduka T; Mochida K; Harino H; Ito K; Kakuno A; Fujii K
    Arch Environ Contam Toxicol; 2010 May; 58(4):991-7. PubMed ID: 19967345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.
    Koutsaftis A; Aoyama I
    Sci Total Environ; 2007 Nov; 387(1-3):166-74. PubMed ID: 17765949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity assessment of the antifouling compound zinc pyrithione using early developmental stages of the ascidian Ciona intestinalis.
    Bellas J
    Biofouling; 2005; 21(5-6):289-96. PubMed ID: 16522542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans.
    Sánchez-Bayo F; Goka K
    Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryotoxicity of zinc pyrithione, an antidandruff chemical, in fish.
    Goka K
    Environ Res; 1999 Jul; 81(1):81-3. PubMed ID: 10361029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).
    Bellas J; Granmo K; Beiras R
    Mar Pollut Bull; 2005 Nov; 50(11):1382-5. PubMed ID: 16023145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity and metabolism of copper pyrithione and its degradation product, 2,2'-dipyridyldisulfide in a marine polychaete.
    Mochida K; Amano H; Onduka T; Kakuno A; Fujii K
    Chemosphere; 2011 Jan; 82(3):390-7. PubMed ID: 20965543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel antifouling agent--zinc pyrithione: short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus.
    Marcheselli M; Conzo F; Mauri M; Simonini R
    Aquat Toxicol; 2010 Jun; 98(2):204-10. PubMed ID: 20211499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper pyrithione and zinc pyrithione induce cytotoxicity and neurotoxicity in neuronal/astrocytic co-cultured cells via oxidative stress.
    Oh HN; Kim WK
    Sci Rep; 2023 Dec; 13(1):23060. PubMed ID: 38155222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments.
    Groth Petersen D; Dahllof I; Nielsen LP
    Environ Toxicol Chem; 2004 Apr; 23(4):921-8. PubMed ID: 15095887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish.
    Mochida K; Ito K; Harino H; Tanaka H; Onduka T; Kakuno A; Fujii K
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 May; 149(4):624-30. PubMed ID: 19211040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apoptosis in HepG2 cells induced by zinc pyrithione via mitochondrial dysfunction pathway: Involvement of zinc accumulation and oxidative stress.
    Mo J; Lin D; Wang J; Li P; Liu W
    Ecotoxicol Environ Saf; 2018 Oct; 161():515-525. PubMed ID: 29913420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis).
    Marcheselli M; Rustichelli C; Mauri M
    Environ Toxicol Chem; 2010 Nov; 29(11):2583-92. PubMed ID: 20853456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes).
    Sánchez-Bayo F; Goka K
    Aquat Toxicol; 2005 Sep; 74(4):285-93. PubMed ID: 16023744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity and accumulation of zinc pyrithione in the liver and kidneys of Carassius auratus gibelio: association with P-glycoprotein expression.
    Ren T; Fu GH; Liu TF; Hu K; Li HR; Fang WH; Yang XL
    Fish Physiol Biochem; 2017 Feb; 43(1):1-9. PubMed ID: 27387320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous phototransformation of zinc pyrithione Degradation kinetics and byproduct identification by liquid chromatography--atmospheric pressure chemical ionisation mass spectrometry.
    Sakkas VA; Shibata K; Yamaguchi Y; Sugasawa S; Albanis T
    J Chromatogr A; 2007 Mar; 1144(2):175-82. PubMed ID: 17291515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.