BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 15111070)

  • 1. Mechanical and metabolic requirements for active lateral stabilization in human walking.
    Donelan JM; Shipman DW; Kram R; Kuo AD
    J Biomech; 2004 Jun; 37(6):827-35. PubMed ID: 15111070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed.
    Ijmker T; Houdijk H; Lamoth CJ; Beek PJ; van der Woude LH
    J Biomech; 2013 Sep; 46(13):2109-14. PubMed ID: 23895896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of step width and arm swing on energetic cost and lateral balance during running.
    Arellano CJ; Kram R
    J Biomech; 2011 Apr; 44(7):1291-5. PubMed ID: 21316058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetic cost of maintaining lateral balance during human running.
    Arellano CJ; Kram R
    J Appl Physiol (1985); 2012 Feb; 112(3):427-34. PubMed ID: 22052870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mind your step: metabolic energy cost while walking an enforced gait pattern.
    Wezenberg D; de Haan A; van Bennekom CA; Houdijk H
    Gait Posture; 2011 Apr; 33(4):544-9. PubMed ID: 21330135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic cost of lateral stabilization during walking in people with incomplete spinal cord injury.
    Matsubara JH; Wu M; Gordon KE
    Gait Posture; 2015 Feb; 41(2):646-51. PubMed ID: 25670651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults.
    Hurt CP; Rosenblatt N; Crenshaw JR; Grabiner MD
    Gait Posture; 2010 Apr; 31(4):461-4. PubMed ID: 20185314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The penguin waddling gait pattern has a more consistent step width than step length.
    Kurz MJ; Scott-Pandorf M; Arellano C; Olsen D; Whitaker G
    J Theor Biol; 2008 May; 252(2):272-6. PubMed ID: 18359044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can external lateral stabilization reduce the energy cost of walking in persons with a lower limb amputation?
    IJmker T; Noten S; Lamoth CJ; Beek PJ; van der Woude LH; Houdijk H
    Gait Posture; 2014 Sep; 40(4):616-21. PubMed ID: 25108643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of gait characteristics between older women with and without peripheral neuropathy in standard and challenging environments.
    Richardson JK; Thies SB; DeMott TK; Ashton-Miller JA
    J Am Geriatr Soc; 2004 Sep; 52(9):1532-7. PubMed ID: 15341557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral stabilization improves walking in people with myelomeningocele.
    Chang CL; Ulrich BD
    J Biomech; 2008; 41(6):1317-23. PubMed ID: 18353335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and metabolic determinants of the preferred step width in human walking.
    Donelan JM; Kram R; Kuo AD
    Proc Biol Sci; 2001 Oct; 268(1480):1985-92. PubMed ID: 11571044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial-lateral balance during stance phase of straight and circular walking of human subjects.
    Kiriyama K; Warabi T; Kato M; Yoshida T; Kokayashi N
    Neurosci Lett; 2005 Nov; 388(2):91-5. PubMed ID: 16039048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic cost and mechanical work for the step-to-step transition in walking after successful total ankle arthroplasty.
    Doets HC; Vergouw D; Veeger HE; Houdijk H
    Hum Mov Sci; 2009 Dec; 28(6):786-97. PubMed ID: 19596466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of an irregular surface and low light on the step variability of patients with peripheral neuropathy during level gait.
    Thies SB; Richardson JK; Demott T; Ashton-Miller JA
    Gait Posture; 2005 Aug; 22(1):40-5. PubMed ID: 15996590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aging and arm swing on the metabolic cost of stability in human walking.
    Ortega JD; Fehlman LA; Farley CT
    J Biomech; 2008 Dec; 41(16):3303-8. PubMed ID: 18814873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal gait deviations in a virtual reality environment.
    Hollman JH; Brey RH; Robb RA; Bang TJ; Kaufman KR
    Gait Posture; 2006 Jun; 23(4):441-4. PubMed ID: 16095905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.