These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 15111083)

  • 41. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of aging on crack-growth resistance and toughening mechanisms in human dentin.
    Koester KJ; Ager JW; Ritchie RO
    Biomaterials; 2008 Apr; 29(10):1318-28. PubMed ID: 18164757
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A qualitative analysis of crack propagation in articular cartilage at varying rates of tensile loading.
    Stok K; Oloyede A
    Connect Tissue Res; 2003; 44(2):109-20. PubMed ID: 12745678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of inner mechanism of anisotropic mechanical property of antler bone.
    Fang Z; Chen B; Lin S; Ye W; Xiao H; Chen X
    J Mech Behav Biomed Mater; 2018 Dec; 88():1-10. PubMed ID: 30114597
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of test environment on the fracture resistance of cortical bone.
    Shin M; Zhang M; Vom Scheidt A; Pelletier MH; Walsh WR; Martens PJ; Kruzic JJ; Busse B; Gludovatz B
    J Mech Behav Biomed Mater; 2022 May; 129():105155. PubMed ID: 35313188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fracture characteristics of acrylic bone cements. I. Fracture toughness.
    Freitag TA; Cannon SL
    J Biomed Mater Res; 1976 Sep; 10(5):805-28. PubMed ID: 977607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cohesive finite element modeling of age-related toughness loss in human cortical bone.
    Ural A; Vashishth D
    J Biomech; 2006; 39(16):2974-82. PubMed ID: 16375909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of compact sandwich specimen to determine the critical strain energy release rate of bone.
    Paruchuru SP; Wang X; Agrawal CM
    Biomed Mater Eng; 2007; 17(4):249-53. PubMed ID: 17611301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of orientation and age on the crack propagation in cortical bone.
    Rahman N; Ur Rahman W; Khan R
    Biomed Mater Eng; 2018; 29(5):601-610. PubMed ID: 30400074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deformation behaviour of bovine cancellous bone.
    Dendorfer S; Maier HJ; Hammer J
    Technol Health Care; 2006; 14(6):549-56. PubMed ID: 17148868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei.
    Skedros JG; Sorenson SM; Takano Y; Turner CH
    Bone; 2006 Jul; 39(1):143-51. PubMed ID: 16459155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of short crack growth at constant stress in bone.
    Hazenberg JG; Taylor D; Clive Lee T
    Biomaterials; 2006 Mar; 27(9):2114-22. PubMed ID: 16243392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A critical evaluation of cortical bone fracture toughness testing methods.
    Dapaah D; Willett T
    J Mech Behav Biomed Mater; 2022 Oct; 134():105419. PubMed ID: 36037708
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone.
    Zimmermann EA; Launey ME; Ritchie RO
    Biomaterials; 2010 Jul; 31(20):5297-305. PubMed ID: 20409579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fracture characterization of bone under mode II loading using the end loaded split test.
    Pereira FA; Morais JJ; Dourado N; de Moura MF; Dias MI
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1764-73. PubMed ID: 22098876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 58. R-curve behavior and micromechanisms of fracture in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):502-11. PubMed ID: 19627857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.