BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15111124)

  • 1. The interpretation of multiple-step transient-state kinetic isotope effects.
    Maniscalco SJ; Tally JF; Fisher HF
    Arch Biochem Biophys; 2004 May; 425(2):165-72. PubMed ID: 15111124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of transient-state kinetic isotope effects.
    Fisher HF; Saha SK
    Biochemistry; 1996 Jan; 35(1):83-8. PubMed ID: 8555202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient-state kinetic approach to mechanisms of enzymatic catalysis.
    Fisher HF
    Acc Chem Res; 2005 Mar; 38(3):157-66. PubMed ID: 15766234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of V/K isotope effects for enzymatic reactions exhibiting multiple isotopically sensitive steps.
    Ruszczycky MW; Anderson VE
    J Theor Biol; 2006 Dec; 243(3):328-42. PubMed ID: 16914160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the time-dependence of a transient-state kinetic isotope effect and the location of complexes in a reaction sequence.
    Fisher HF; Palfey BA; Maniscalco SJ; Indyk L
    J Phys Chem A; 2006 Apr; 110(13):4465-72. PubMed ID: 16571051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic catalysis and transfers in solution. I. Theory and computations, a unified view.
    Marcus RA
    J Chem Phys; 2006 Nov; 125(19):194504. PubMed ID: 17129120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple isotopic labeling and kinetic isotope effects: exposing H-transfer steps in enzymatic systems.
    Sen A; Yahashiri A; Kohen A
    Biochemistry; 2011 Jul; 50(29):6462-8. PubMed ID: 21688781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical multiple kinetic isotope effects for an SN2 reaction. An attempt to determine transition-state structure and the ability of theoretical methods to predict experimental kinetic isotope effects.
    Fang YR; Gao Y; Ryberg P; Eriksson J; Kołodziejska-Huben M; Dybała-Defratyka A; Madhavan S; Danielsson R; Paneth P; Matsson O; Westaway KC
    Chemistry; 2003 Jun; 9(12):2696-709. PubMed ID: 12772284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole.
    Cash MT; Miles EW; Phillips RS
    Arch Biochem Biophys; 2004 Dec; 432(2):233-43. PubMed ID: 15542062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ; Fromm HJ
    Biochem Biophys Res Commun; 1999 Nov; 265(2):448-52. PubMed ID: 10558887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the kinetic isotope effects on initial rates in transient kinetics.
    Palfey BA; Fagan RL
    Biochemistry; 2006 Nov; 45(45):13631-40. PubMed ID: 17087517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new interpretation of chlorine leaving group kinetic isotope effects; a theoretical approach.
    Dybała-Defratyka A; Rostkowski M; Matsson O; Westaway KC; Paneth P
    J Org Chem; 2004 Jul; 69(15):4900-5. PubMed ID: 15255714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-sphere amino acids contribute to transition-state structure in bovine purine nucleoside phosphorylase.
    Li L; Luo M; Ghanem M; Taylor EA; Schramm VL
    Biochemistry; 2008 Feb; 47(8):2577-83. PubMed ID: 18281958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of the transient phase and steady state of open multicyclic enzyme cascades.
    Varón R; Havsteen BH; Valero E; Molina-Alarcón M; García-Cánovas F; García-Moreno M
    Acta Biochim Pol; 2005; 52(4):765-80. PubMed ID: 16086076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of ionizable residues in the catalytic mechanism of tryptophan synthase from Salmonella typhimurium.
    Raboni S; Mozzarelli A; Cook PF
    Biochemistry; 2007 Nov; 46(45):13223-34. PubMed ID: 17927213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.