These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15111388)

  • 1. The facilitated probability of quantal secretion within an array of calcium channels of an active zone at the amphibian neuromuscular junction.
    Bennett MR; Farnell L; Gibson WG
    Biophys J; 2004 May; 86(5):2674-90. PubMed ID: 15111388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The probability of quantal secretion within an array of calcium channels of an active zone.
    Bennett MR; Farnell L; Gibson WG
    Biophys J; 2000 May; 78(5):2222-40. PubMed ID: 10777722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of calcium sequestration during facilitation at active zones of an amphibian neuromuscular junction.
    Bennett MR; Farnell L; Gibson WG; Dickens P
    J Theor Biol; 2007 Jul; 247(2):230-41. PubMed ID: 17462674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of calcium ions on the binomial parameters that control acetylcholine release during trains of nerve impulses at amphibian neuromuscular synapses.
    Bennett MR; Fisher C
    J Physiol; 1977 Oct; 271(3):673-98. PubMed ID: 411920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers.
    Gilmanov IR; Samigullin DV; Vyskocil F; Nikolsky EE; Bukharaeva EA
    J Comput Neurosci; 2008 Oct; 25(2):296-307. PubMed ID: 18427967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates.
    Bennett MR; Gibson WG; Robinson J
    Biophys J; 1997 Oct; 73(4):1815-29. PubMed ID: 9336177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic secretion of quanta from nerve terminals at synaptic sites on muscle cells: non-uniformity, autoinhibition and the binomial hypothesis.
    Bennett MR; Robinson J
    Proc R Soc Lond B Biol Sci; 1990 Apr; 239(1296):329-58. PubMed ID: 1972795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The probability of quantal secretion near a single calcium channel of an active zone.
    Bennett MR; Farnell L; Gibson WG
    Biophys J; 2000 May; 78(5):2201-21. PubMed ID: 10777721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The probability of quantal secretion at release sites in different calcium concentrations in toad (Bufo marinus) muscle.
    Bennett MR; Lavidis NA
    J Physiol; 1989 Nov; 418():219-33. PubMed ID: 2576063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction.
    Tanabe N; Kijima H
    J Physiol; 1992 Sep; 455():271-89. PubMed ID: 1484356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mobile buffers on facilitation: experimental and computational studies.
    Tang Y; Schlumpberger T; Kim T; Lueker M; Zucker RS
    Biophys J; 2000 Jun; 78(6):2735-51. PubMed ID: 10827959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation at the lobster neuromuscular junction: a stimulus-dependent mobilization model.
    Worden MK; Bykhovskaia M; Hackett JT
    J Neurophysiol; 1997 Jul; 78(1):417-28. PubMed ID: 9242290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitation and delayed release at about 0 degree C at the frog neuromuscular junction: effects of calcium chelators, calcium transport inhibitors, and okadaic acid.
    Van der Kloot W; Molgó J
    J Neurophysiol; 1993 Mar; 69(3):717-29. PubMed ID: 8385191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction by intracellular calcium chelation of acetylcholine secretion without occluding the effects of adenosine at frog motor nerve endings.
    Hunt JM; Redman RS; Silinsky EM
    Br J Pharmacol; 1994 Mar; 111(3):753-8. PubMed ID: 8019754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of the early phases of crotoxin poisoning at frog neuromuscular junctions.
    Rodrigues-Simioni L; Hawgood BJ; Smith IC
    Toxicon; 1990; 28(12):1479-89. PubMed ID: 2089741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles.
    Kits KS; de Vlieger TA; Kooi BW; Mansvelder HD
    Biophys J; 1999 Mar; 76(3):1693-705. PubMed ID: 10049349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of intracellular calcium and its possible relationship to phasic transmitter release and facilitation at the frog neuromuscular junction.
    Stockbridge N; Moore JW
    J Neurosci; 1984 Mar; 4(3):803-11. PubMed ID: 6142934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic calcium-activated potassium channels and calcium channels at a crayfish neuromuscular junction.
    Blundon JA; Wright SN; Brodwick MS; Bittner GD
    J Neurophysiol; 1995 Jan; 73(1):178-89. PubMed ID: 7714563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into short-term synaptic facilitation at the frog neuromuscular junction.
    Ma J; Kelly L; Ingram J; Price TJ; Meriney SD; Dittrich M
    J Neurophysiol; 2015 Jan; 113(1):71-87. PubMed ID: 25210157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The mechanisms of short-term forms of synaptic plasticity].
    Zefirov AL; Mukhamed'iarov MA
    Ross Fiziol Zh Im I M Sechenova; 2004 Aug; 90(8):1041-59. PubMed ID: 15552370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.