BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 15111723)

  • 21. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants.
    Siefritz F; Tyree MT; Lovisolo C; Schubert A; Kaldenhoff R
    Plant Cell; 2002 Apr; 14(4):869-76. PubMed ID: 11971141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of rice leaf sheath during drought stress.
    Ali GM; Komatsu S
    J Proteome Res; 2006 Feb; 5(2):396-403. PubMed ID: 16457606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants.
    Ding L; Li Y; Gao L; Lu Z; Wang M; Ling N; Shen Q; Guo S
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29337869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural Variation in
    Xiong H; Yu J; Miao J; Li J; Zhang H; Wang X; Liu P; Zhao Y; Jiang C; Yin Z; Li Y; Guo Y; Fu B; Wang W; Li Z; Ali J; Li Z
    Plant Physiol; 2018 Sep; 178(1):451-467. PubMed ID: 30068540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of OsPIP2;7, a water channel protein in rice.
    Li GW; Zhang MH; Cai WM; Sun WN; Su WA
    Plant Cell Physiol; 2008 Dec; 49(12):1851-8. PubMed ID: 18988636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery.
    Yu X; Peng YH; Zhang MH; Shao YJ; Su WA; Tang ZC
    Cell Res; 2006 Jun; 16(6):599-608. PubMed ID: 16775631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.
    Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y
    Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole plant responses, key processes, and adaptation to drought stress: the case of rice.
    Lafitte HR; Yongsheng G; Yan S; Li ZK
    J Exp Bot; 2007; 58(2):169-75. PubMed ID: 16997901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydraulic conductivity of rice roots.
    Miyamoto N; Steudle E; Hirasawa T; Lafitte R
    J Exp Bot; 2001 Sep; 52(362):1835-46. PubMed ID: 11520872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments.
    Li Z; Mu P; Li C; Zhang H; Li Z; Gao Y; Wang X
    Theor Appl Genet; 2005 May; 110(7):1244-52. PubMed ID: 15765223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase.
    Wang FZ; Wang QB; Kwon SY; Kwak SS; Su WA
    J Plant Physiol; 2005 Apr; 162(4):465-72. PubMed ID: 15900889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ecophysiological responses to excess iron in lowland and upland rice cultivars.
    Müller C; Silveira SFDS; Daloso DM; Mendes GC; Merchant A; Kuki KN; Oliva MA; Loureiro ME; Almeida AM
    Chemosphere; 2017 Dec; 189():123-133. PubMed ID: 28934652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized.
    Parent B; Suard B; Serraj R; Tardieu F
    Plant Cell Environ; 2010 Aug; 33(8):1256-67. PubMed ID: 20302604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.
    Ohrui T; Nobira H; Sakata Y; Taji T; Yamamoto C; Nishida K; Yamakawa T; Sasuga Y; Yaguchi Y; Takenaga H; Tanaka S
    Planta; 2007 Dec; 227(1):47-56. PubMed ID: 17674031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance.
    Liu S; Cheng Y; Zhang X; Guan Q; Nishiuchi S; Hase K; Takano T
    Plant Mol Biol; 2007 May; 64(1-2):49-58. PubMed ID: 17245561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L).
    Rabello AR; Guimarães CM; Rangel PH; da Silva FR; Seixas D; de Souza E; Brasileiro AC; Spehar CR; Ferreira ME; Mehta A
    BMC Genomics; 2008 Oct; 9():485. PubMed ID: 18922162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H
    Li J; Li Y; Yin Z; Jiang J; Zhang M; Guo X; Ye Z; Zhao Y; Xiong H; Zhang Z; Shao Y; Jiang C; Zhang H; An G; Paek NC; Ali J; Li Z
    Plant Biotechnol J; 2017 Feb; 15(2):183-196. PubMed ID: 27420922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide analysis of rice dehydrin gene family: Its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress.
    Verma G; Dhar YV; Srivastava D; Kidwai M; Chauhan PS; Bag SK; Asif MH; Chakrabarty D
    PLoS One; 2017; 12(5):e0176399. PubMed ID: 28459834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses.
    Price AH; Cairns JE; Horton P; Jones HG; Griffiths H
    J Exp Bot; 2002 May; 53(371):989-1004. PubMed ID: 11971911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.