These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 15112564)
1. Catalytic growth of carbon nanoballs with Co encapsulation from CH4 decomposition: MoOx-promoted shrinking of the carbon nanoball size. Zhong Z; Chen F; Xiong X; Soon H; Lin J; Tan KL J Nanosci Nanotechnol; 2004; 4(1-2):183-8. PubMed ID: 15112564 [TBL] [Abstract][Full Text] [Related]
2. Formation of pile networks by long carbon nanotubes from decomposition of CO on Co-Mo film. Zhu YT; Egeland GW; Li Y; Jia QX; Gallegos J; Serquis A; Liao XZ; Peterson DE; Dye RC; Roop BJ; Hoffbauer MA J Nanosci Nanotechnol; 2004; 4(1-2):189-91. PubMed ID: 15112565 [TBL] [Abstract][Full Text] [Related]
3. Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts. Monzon A; Lolli G; Cosma S; Mohamed SB; Resasco DE J Nanosci Nanotechnol; 2008 Nov; 8(11):6141-52. PubMed ID: 19198356 [TBL] [Abstract][Full Text] [Related]
5. Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Li LJ; Khlobystov AN; Wiltshire JG; Briggs GA; Nicholas RJ Nat Mater; 2005 Jun; 4(6):481-5. PubMed ID: 15908958 [TBL] [Abstract][Full Text] [Related]
6. Synergistic strengthening effect of ultrafine-grained metals reinforced with carbon nanotubes. Jeong YJ; Cha SI; Kim KT; Lee KH; Mo CB; Hong SH Small; 2007 May; 3(5):840-4. PubMed ID: 17366650 [No Abstract] [Full Text] [Related]
7. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO. Herrera JE; Balzano L; Pompeo F; Resasco DE J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property. Qian C; Qi H; Gao B; Cheng Y; Qiu Q; Qin LC; Zhou O; Liu J J Nanosci Nanotechnol; 2006 May; 6(5):1346-9. PubMed ID: 16792363 [TBL] [Abstract][Full Text] [Related]
9. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method. Liu Q; Ren W; Chen ZG; Wang DW; Liu B; Yu B; Li F; Cong H; Cheng HM ACS Nano; 2008 Aug; 2(8):1722-8. PubMed ID: 19206377 [TBL] [Abstract][Full Text] [Related]
10. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst. Ouyang Y; Chen L; Liu QX; Fang Y Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582 [TBL] [Abstract][Full Text] [Related]
11. Unravelling the mechanisms behind mixed catalysts for the high yield production of single-walled carbon nanotubes. Tetali S; Zaka M; Schönfelder R; Bachmatiuk A; Börrnert F; Ibrahim I; Lin JH; Cuniberti G; Warner JH; Büchner B; Rümmeli MH ACS Nano; 2009 Dec; 3(12):3839-44. PubMed ID: 19883094 [TBL] [Abstract][Full Text] [Related]
12. Encapsulation of Mo₂C in MoS₂ inorganic fullerene-like nanoparticles and nanotubes. Wiesel I; Popovitz-Biro R; Tenne R Nanoscale; 2013 Feb; 5(4):1499-502. PubMed ID: 23338052 [TBL] [Abstract][Full Text] [Related]
13. The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method. Ren W; Li F; Bai S; Cheng HM J Nanosci Nanotechnol; 2006 May; 6(5):1339-45. PubMed ID: 16792362 [TBL] [Abstract][Full Text] [Related]
15. A new material with atomized cobalt-multiwalled carbon nanotubes: a possible substitute for human implants. Joshi B; Gupta S; Kalra N; Gudyka R; Santhanam KS J Nanosci Nanotechnol; 2010 Jun; 10(6):3799-804. PubMed ID: 20355370 [TBL] [Abstract][Full Text] [Related]
16. Novel catalysts, room temperature, and the importance of oxygen for the synthesis of single-walled carbon nanotubes. Rümmeli MH; Borowiak-Palen E; Gemming T; Pichler T; Knupfer M; Kalbác M; Dunsch L; Jost O; Silva SR; Pompe W; Büchner B Nano Lett; 2005 Jul; 5(7):1209-15. PubMed ID: 16178212 [TBL] [Abstract][Full Text] [Related]
17. Oxidation and thermal stability of linear carbon chains contained in thermally treated double-walled carbon nanotubes. Muramatsu H; Kim YA; Hayashi T; Endo M; Terrones M; Dresselhaus MS Small; 2007 May; 3(5):788-92. PubMed ID: 17393551 [No Abstract] [Full Text] [Related]
18. Self-organization of carbide superlattice and nucleation of carbon nanotubes. Tsui F; Ryan PA J Nanosci Nanotechnol; 2003 Dec; 3(6):529-34. PubMed ID: 15002135 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes. Bajwa N; Li X; Ajayan PM; Vajtai R J Nanosci Nanotechnol; 2008 Nov; 8(11):6054-64. PubMed ID: 19198346 [TBL] [Abstract][Full Text] [Related]
20. Application of Ni:SiO2 nanocomposite to control the carbon deposition on the carbon dioxide reforming of methane. Carreño NL; Leite ER; Longo E; Lisboa-Filho PN; Valentini A; Probst LF; Schreiner WH J Nanosci Nanotechnol; 2002 Oct; 2(5):491-4. PubMed ID: 12908285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]