BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15112819)

  • 1. Propagation of uncertainty in hourly utility NOx emissions through a photochemical grid air quality model: a case study for the Charlotte, NC, modeling domain.
    Abdel-Aziz AM; Frey HC
    Environ Sci Technol; 2004 Apr; 38(7):2153-60. PubMed ID: 15112819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of hourly variability in NO(x) emissions for baseload coal-fired power plants.
    Abdel-Aziz A; Frey HC
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1401-11. PubMed ID: 14649760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the effects of VOC/NOx emissions on ozone synthesis in the cascadia airshed of the Pacific Northwest.
    Barna M; Lamb B; Westberg H
    J Air Waste Manag Assoc; 2001 Jul; 51(7):1021-34. PubMed ID: 15658221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of ozone precursors in a complex industrial terrain by using multiscale-nested air quality models with fine spatial resolution (1 km2).
    Jiménez P; Parra R; Baldasano JM
    J Air Waste Manag Assoc; 2005 Aug; 55(8):1085-99. PubMed ID: 16187579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An assessment of the emissions inventory processing systems EMS-2001 and SMOKE in grid-based air quality models.
    Hogrefe C; Sistla G; Zalewsky E; Hao W; Ku JY
    J Air Waste Manag Assoc; 2003 Sep; 53(9):1121-9. PubMed ID: 13678369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis.
    Cohan DS; Hakami A; Hu Y; Russell AG
    Environ Sci Technol; 2005 Sep; 39(17):6739-48. PubMed ID: 16190234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical smog modeling for assessment of potential impacts of different management strategies on air quality of the Bangkok Metropolitan Region, Thailand.
    Oanh NT; Zhang B
    J Air Waste Manag Assoc; 2004 Oct; 54(10):1321-38. PubMed ID: 15540584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia).
    Toro MV; Cremades LV; Calbó J
    Chemosphere; 2006 Oct; 65(5):881-8. PubMed ID: 16631888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of population density and temporal variations in emissions on the air duality benefits of NOx emission trading.
    Nobel CE; McDonald-Buller EC; Kimura Y; Lumbley KE; Allen DT
    Environ Sci Technol; 2002 Aug; 36(16):3465-73. PubMed ID: 12214636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeled response of ozone to electricity generation emissions in the northeastern United States using three sensitivity techniques.
    Couzo E; McCann J; Vizuete W; Blumsack S; West JJ
    J Air Waste Manag Assoc; 2016 May; 66(5):456-69. PubMed ID: 26796121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.
    Mendoza-Dominguez A; Wilkinson JG; Yang YJ; Russell AG
    J Air Waste Manag Assoc; 2000 Jan; 50(1):21-31. PubMed ID: 10680362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PRCI ambient NO
    Panek JA; McCarthy JM; Huth AZ; Krol AJ; Nowak C
    J Air Waste Manag Assoc; 2020 May; 70(5):504-521. PubMed ID: 32186474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric chlorine chemistry in southeast Texas: impacts on ozone formation and control.
    Chang S; Allen DT
    Environ Sci Technol; 2006 Jan; 40(1):251-62. PubMed ID: 16433359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.
    Cai C; Kelly JT; Avise JC; Kaduwela AP; Stockwell WR
    J Air Waste Manag Assoc; 2011 May; 61(5):559-72. PubMed ID: 21608496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions.
    Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R
    J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan.
    Tsai DH; Wang JL; Wang CH; Chan CC
    J Environ Monit; 2008 Jan; 10(1):109-18. PubMed ID: 18175024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.
    Simon H; Baker KR; Akhtar F; Napelenok SL; Possiel N; Wells B; Timin B
    Environ Sci Technol; 2013 Mar; 47(5):2304-13. PubMed ID: 23256562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating a Canadian regional air quality model using ground-based observations in north-eastern Canada and United States.
    Yang RJ; Xia AG; Michelangeli DV; Plummer DA; Neary L; Kaminski JW; McConnell JC
    J Environ Monit; 2003 Feb; 5(1):40-6. PubMed ID: 12619755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application and evaluation of two air quality models for particulate matter for a southeastern U.S. episode.
    Zhang Y; Pun B; Wu SY; Vijayaraghavan K; Seigneur C
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1478-93. PubMed ID: 15648386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.