These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1511309)

  • 1. Peripheral control of the antagonist muscle during unexpectedly loaded arm movements.
    Simmons RW; Richardson C
    Brain Res; 1992 Jul; 585(1-2):260-6. PubMed ID: 1511309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of goal-oriented, rapid arm movements by individuals with diabetes mellitus.
    Simmons RW; Richardson C
    Percept Mot Skills; 1993 Feb; 76(1):8-10. PubMed ID: 8451152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral regulation of stiffness during arm movements by coactivation of the antagonist muscles.
    Simmons RW; Richardson C
    Brain Res; 1988 Nov; 473(1):134-40. PubMed ID: 3208115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjustments of fast goal-directed movements in response to an unexpected inertial load.
    Smeets JB; Erkelens CJ; Denier van der Gon JJ
    Exp Brain Res; 1990; 81(2):303-12. PubMed ID: 2397758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms.
    Gottlieb GL
    J Neurophysiol; 1996 Nov; 76(5):3207-29. PubMed ID: 8930267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-trial adaptation of movement to changes in load.
    Weeks DL; Aubert MP; Feldman AG; Levin MF
    J Neurophysiol; 1996 Jan; 75(1):60-74. PubMed ID: 8822542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organizing principles for single-joint movements. I. A speed-insensitive strategy.
    Gottlieb GL; Corcos DM; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):342-57. PubMed ID: 2769334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern.
    Cooke JD; Brown SH
    J Neurophysiol; 1990 Mar; 63(3):465-72. PubMed ID: 2329356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of different types of mechanical load on the duration of the initial agonist pulse.
    Simmons RW; Richardson C
    Exp Brain Res; 1993; 92(3):524-7. PubMed ID: 8454015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between EMG patterns and kinematic properties for flexion movements at the human wrist.
    Mustard BE; Lee RG
    Exp Brain Res; 1987; 66(2):247-56. PubMed ID: 3595772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of agonist and antagonist muscles in fast arm movements in man.
    Wierzbicka MM; Wiegner AW; Shahani BT
    Exp Brain Res; 1986; 63(2):331-40. PubMed ID: 3758250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic and neuromuscular force patterns associated with unexpectedly loaded rapid limb movements.
    Richardson C; Simmons RW
    Brain Res; 1985 Sep; 343(2):246-51. PubMed ID: 4052750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromuscular control mechanisms and strategy in arm movements of attempted supranormal speed.
    Ives JC; Abraham L; Kroll W
    Res Q Exerc Sport; 1999 Dec; 70(4):335-48. PubMed ID: 10797892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural adjustments associated with rapid voluntary arm movements 1. Electromyographic data.
    Friedli WG; Hallett M; Simon SR
    J Neurol Neurosurg Psychiatry; 1984 Jun; 47(6):611-22. PubMed ID: 6736995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematics and end-point control of arm movements are modified by unexpected changes in viscous loading.
    Sanes JN
    J Neurosci; 1986 Nov; 6(11):3120-7. PubMed ID: 3772424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to destabilizing dynamics by means of muscle cocontraction.
    Milner TE
    Exp Brain Res; 2002 Apr; 143(4):406-16. PubMed ID: 11914785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organizing principles for single-joint movements. II. A speed-sensitive strategy.
    Corcos DM; Gottlieb GL; Agarwal GC
    J Neurophysiol; 1989 Aug; 62(2):358-68. PubMed ID: 2769335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of limb stiffness and scaled phase invariance properties of skilled high-speed arm flexion movements of a loaded manipulator.
    Richardson C; Simmons RW
    Brain Res; 1992 Jun; 582(2):246-52. PubMed ID: 1393547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.