BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 15113115)

  • 21. Leaching from waste incineration bottom ashes treated in a rotary kiln.
    Hyks J; Nesterov I; Mogensen E; Jensen PA; Astrup T
    Waste Manag Res; 2011 Oct; 29(10):995-1007. PubMed ID: 21930523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Heavy metal stabilization in municipal solid waste incineration fly ash using soluble phosphate].
    Jiang JG; Zhang Y; Xu X; Wang J; Deng Z; Zhao ZZ
    Huan Jing Ke Xue; 2005 Jul; 26(4):191-4. PubMed ID: 16212195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of waste incinerator air-pollution-control residues with FeSO4: laboratory investigation of design parameters.
    Jensen DL; Christensen TH; Lundtorp K
    Waste Manag Res; 2002 Feb; 20(1):80-9. PubMed ID: 12020098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behaviour of heavy metals immobilized by co-melting treatment of sewage sludge ash and municipal solid waste incinerator fly ash.
    Lin KL; Huang WJ; Chen KC; Chow JD; Chen HJ
    Waste Manag Res; 2009 Oct; 27(7):660-7. PubMed ID: 19470538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant.
    Nikravan M; Ramezanianpour AA; Maknoon R
    J Environ Manage; 2020 Apr; 260():110042. PubMed ID: 31941624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporary stabilization of air pollution control residues using carbonation.
    Zhang H; He PJ; Shao LM; Lee DJ
    Waste Manag; 2008; 28(3):509-17. PubMed ID: 17408943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    Waste Manag; 2009 Sep; 29(9):2483-93. PubMed ID: 19545989
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate.
    Arickx S; Van Gerven T; Knaepkens T; Hindrix K; Evens R; Vandecasteele C
    Waste Manag; 2007; 27(10):1422-7. PubMed ID: 17531463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill.
    Gwenzi W; Gora D; Chaukura N; Tauro T
    Chemosphere; 2016 Mar; 147():144-54. PubMed ID: 26766350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment.
    Liu Y; Li Y; Li X; Jiang Y
    Waste Manag; 2008; 28(7):1126-36. PubMed ID: 17658250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaching from solid waste incineration ashes used in cement-treated base layers for pavements.
    Cai Z; Bager DH; Christensen TH
    Waste Manag; 2004; 24(6):603-12. PubMed ID: 15219919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrodialytic remediation of municipal solid waste incineration residues using different membranes.
    Parés Viader R; Jensen PE; Ottosen LM
    Chemosphere; 2017 Feb; 169():62-68. PubMed ID: 27855332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Factors affecting the durability of dimethyl dithiocarbamate-stabilized air pollution control (APC) residues derived from municipal solid waste incineration.
    Wang Y; Hu J; Gong H; Qi C; Zhu N
    J Environ Manage; 2023 Nov; 345():118778. PubMed ID: 37591105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fate of heavy metals during municipal solid waste incineration.
    Abanades S; Flamant G; Gagnepain B; Gauthier D
    Waste Manag Res; 2002 Feb; 20(1):55-68. PubMed ID: 12020096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling.
    Long YY; Feng YJ; Cai SS; Ding WX; Shen DS
    J Hazard Mater; 2013 Oct; 261():427-34. PubMed ID: 23973476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material.
    del Valle-Zermeño R; Formosa J; Chimenos JM; Martínez M; Fernández AI
    Waste Manag; 2013 Mar; 33(3):621-7. PubMed ID: 23102641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical stabilization of air pollution control residues from municipal solid waste incineration.
    Quina MJ; Bordado JC; Quinta-Ferreira RM
    J Hazard Mater; 2010 Jul; 179(1-3):382-92. PubMed ID: 20359820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan.
    Jung CH; Matsuto T; Tanaka N; Okada T
    Waste Manag; 2004; 24(4):381-91. PubMed ID: 15081066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.