BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15113121)

  • 1. Mechanisms involved in the increase in intracellular calcium following hypotonic shock in bovine articular chondrocytes.
    Sánchez JC; Danks TA; Wilkins RJ
    Gen Physiol Biophys; 2003 Dec; 22(4):487-500. PubMed ID: 15113121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in intracellular calcium concentration in response to hypertonicity in bovine articular chondrocytes.
    Sánchez JC; Wilkins RJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jan; 137(1):173-82. PubMed ID: 14720602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cell swelling on intracellular calcium and membrane currents in bovine articular chondrocytes.
    Yellowley CE; Hancox JC; Donahue HJ
    J Cell Biochem; 2002; 86(2):290-301. PubMed ID: 12111998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms contributing to fluid-flow-induced Ca2+ mobilization in articular chondrocytes.
    Yellowley CE; Jacobs CR; Donahue HJ
    J Cell Physiol; 1999 Sep; 180(3):402-8. PubMed ID: 10430180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of interleukin-1 on calcium signaling and the increase of filamentous actin in isolated and in situ articular chondrocytes.
    Pritchard S; Guilak F
    Arthritis Rheum; 2006 Jul; 54(7):2164-74. PubMed ID: 16802354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of Ca2+ release-activated Ca2+ channels as a potential mechanism involved in non-genomic 1,25(OH)2-vitamin D3-induced Ca2+ entry in skeletal muscle cells.
    Vazquez G; de Boland AR; Boland R
    Biochem Biophys Res Commun; 1997 Oct; 239(2):562-5. PubMed ID: 9344870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride.
    Guilak F; Zell RA; Erickson GR; Grande DA; Rubin CT; McLeod KJ; Donahue HJ
    J Orthop Res; 1999 May; 17(3):421-9. PubMed ID: 10376733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein.
    Poiraudeau S; Lieberherr M; Kergosie N; Corvol MT
    J Cell Biochem; 1997 Mar; 64(3):414-22. PubMed ID: 9057099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostasis of intracellular Ca2+ in equine chondrocytes: response to hypotonic shock.
    Wilkins RJ; Fairfax TP; Davies ME; Muzyamba MC; Gibson JS
    Equine Vet J; 2003 Jul; 35(5):439-43. PubMed ID: 12875320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of REV5901 on intracellular calcium signalling in freshly isolated bovine articular chondrocytes.
    Qusous A; Parker E; Ali N; Mohmand SG; Kerrigan MJ
    Gen Physiol Biophys; 2012 Sep; 31(3):299-307. PubMed ID: 23047943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRPV4 channels activity in bovine articular chondrocytes: regulation by obesity-associated mediators.
    Sánchez JC; López-Zapata DF; Wilkins RJ
    Cell Calcium; 2014 Dec; 56(6):493-503. PubMed ID: 25459300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercurial-induced alterations in neuronal divalent cation homeostasis.
    Denny MF; Atchison WD
    Neurotoxicology; 1996; 17(1):47-61. PubMed ID: 8784818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes.
    D'Andrea P; Calabrese A; Capozzi I; Grandolfo M; Tonon R; Vittur F
    Biorheology; 2000; 37(1-2):75-83. PubMed ID: 10912180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes.
    Browning JA; Saunders K; Urban JP; Wilkins RJ
    Biorheology; 2004; 41(3-4):299-308. PubMed ID: 15299262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes.
    Ruwhof C; van Wamel JT; Noordzij LA; Aydin S; Harper JC; van der Laarse A
    Cell Calcium; 2001 Feb; 29(2):73-83. PubMed ID: 11162845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of intracellular calcium influences capsaicin-induced currents of TRPV-1 and voltage-activated channel currents in nociceptive neurones.
    Hagenacker T; Büsselberg D
    J Peripher Nerv Syst; 2007 Dec; 12(4):277-84. PubMed ID: 18042138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel Ca2+ influx pathway activated by mechanical stretch in human airway smooth muscle cells.
    Ito S; Kume H; Naruse K; Kondo M; Takeda N; Iwata S; Hasegawa Y; Sokabe M
    Am J Respir Cell Mol Biol; 2008 Apr; 38(4):407-13. PubMed ID: 17975175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hypotonic shock on intracellular pH in bovine articular chondrocytes.
    Sánchez JC; Wilkins RJ
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Aug; 135(4):575-83. PubMed ID: 12890547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ni2+ blocks the Ca2+ influx in human keratinocytes following a rise in extracellular Ca2+.
    Jones KT; Sharpe GR
    Exp Cell Res; 1994 Jun; 212(2):409-13. PubMed ID: 7514538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of oscillatory uterine contraction by the PCB mixture Aroclor 1242 may involve increased [Ca2+]i through voltage-operated calcium channels.
    Bae J; Stuenkel EL; Loch-Caruso R
    Toxicol Appl Pharmacol; 1999 Mar; 155(3):261-72. PubMed ID: 10079212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.