These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 15113217)
1. Origin, nature, and fate of the fluorescent state of the green fluorescent protein chromophore at the CASPT2//CASSCF resolution. Martin ME; Negri F; Olivucci M J Am Chem Soc; 2004 May; 126(17):5452-64. PubMed ID: 15113217 [TBL] [Abstract][Full Text] [Related]
2. The role of the protein matrix in green fluorescent protein fluorescence. Maddalo SL; Zimmer M Photochem Photobiol; 2006; 82(2):367-72. PubMed ID: 16613487 [TBL] [Abstract][Full Text] [Related]
4. Probing the decay coordinate of the green fluorescent protein: arrest of cis-trans isomerization by the protein significantly narrows the fluorescence spectra. Stavrov SS; Solntsev KM; Tolbert LM; Huppert D J Am Chem Soc; 2006 Feb; 128(5):1540-6. PubMed ID: 16448124 [TBL] [Abstract][Full Text] [Related]
5. Solvent effects on the vibrational activity and photodynamics of the green fluorescent protein chromophore: a quantum-chemical study. Altoe' P; Bernardi F; Garavelli M; Orlandi G; Negri F J Am Chem Soc; 2005 Mar; 127(11):3952-63. PubMed ID: 15771532 [TBL] [Abstract][Full Text] [Related]
6. A diabatic three-state representation of photoisomerization in the green fluorescent protein chromophore. Olsen S; McKenzie RH J Chem Phys; 2009 May; 130(18):184302. PubMed ID: 19449916 [TBL] [Abstract][Full Text] [Related]
7. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Verkhusha VV; Chudakov DM; Gurskaya NG; Lukyanov S; Lukyanov KA Chem Biol; 2004 Jun; 11(6):845-54. PubMed ID: 15217617 [TBL] [Abstract][Full Text] [Related]
8. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states. Olsen S; Smith SC J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685 [TBL] [Abstract][Full Text] [Related]
9. The ring-opening reaction of chromenes: a photochemical mode-dependent transformation. Migani A; Gentili PL; Negri F; Olivucci M; Romani A; Favaro G; Becker RS J Phys Chem A; 2005 Oct; 109(39):8684-92. PubMed ID: 16834270 [TBL] [Abstract][Full Text] [Related]
10. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Pakhomov AA; Martynov VI Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics simulations of enhanced green fluorescent proteins: effects of F64L, S65T and T203Y mutations on the ground-state proton equilibria. Nifosì R; Tozzini V Proteins; 2003 May; 51(3):378-89. PubMed ID: 12696049 [TBL] [Abstract][Full Text] [Related]
12. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Ai HW; Shaner NC; Cheng Z; Tsien RY; Campbell RE Biochemistry; 2007 May; 46(20):5904-10. PubMed ID: 17444659 [TBL] [Abstract][Full Text] [Related]
13. Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Quillin ML; Anstrom DM; Shu X; O'Leary S; Kallio K; Chudakov DM; Remington SJ Biochemistry; 2005 Apr; 44(15):5774-87. PubMed ID: 15823036 [TBL] [Abstract][Full Text] [Related]
14. Non-adiabatic dynamics of isolated green fluorescent protein chromophore anion. Zhao L; Zhou PW; Li B; Gao AH; Han KL J Chem Phys; 2014 Dec; 141(23):235101. PubMed ID: 25527960 [TBL] [Abstract][Full Text] [Related]
15. Isomerization mechanism of the HcRed fluorescent protein chromophore. Sun Q; Li Z; Lan Z; Pfisterer C; Doerr M; Fischer S; Smith SC; Thiel W Phys Chem Chem Phys; 2012 Aug; 14(32):11413-24. PubMed ID: 22801745 [TBL] [Abstract][Full Text] [Related]
16. Light-driven decarboxylation of wild-type green fluorescent protein. Bell AF; Stoner-Ma D; Wachter RM; Tonge PJ J Am Chem Soc; 2003 Jun; 125(23):6919-26. PubMed ID: 12783544 [TBL] [Abstract][Full Text] [Related]
17. Excited-state structure determination of the green fluorescent protein chromophore. Usman A; Mohammed OF; Nibbering ET; Dong J; Solntsev KM; Tolbert LM J Am Chem Soc; 2005 Aug; 127(32):11214-5. PubMed ID: 16089429 [TBL] [Abstract][Full Text] [Related]
18. Electronic excitations of green fluorescent proteins: modeling solvatochromatic shifts of red fluorescent protein chromophore model compound in aqueous solutions. Yan W; Zhang L; Xie D; Zeng J J Phys Chem B; 2007 Dec; 111(50):14055-63. PubMed ID: 18044868 [TBL] [Abstract][Full Text] [Related]
19. Electronic excitations of the green fluorescent protein chromophore in its protonation states: SAC/SAC-CI study. Das AK; Hasegawa JY; Miyahara T; Ehara M; Nakatsuji H J Comput Chem; 2003 Sep; 24(12):1421-31. PubMed ID: 12868107 [TBL] [Abstract][Full Text] [Related]
20. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. Wilmann PG; Petersen J; Pettikiriarachchi A; Buckle AM; Smith SC; Olsen S; Perugini MA; Devenish RJ; Prescott M; Rossjohn J J Mol Biol; 2005 May; 349(1):223-37. PubMed ID: 15876379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]