BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 15113407)

  • 1. SUPFAM: a database of sequence superfamilies of protein domains.
    Pandit SB; Bhadra R; Gowri VS; Balaji S; Anand B; Srinivasan N
    BMC Bioinformatics; 2004 Mar; 5():28. PubMed ID: 15113407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate domain identification with structure-anchored hidden Markov models, saHMMs.
    Tångrot JE; Kågström B; Sauer UH
    Proteins; 2009 Aug; 76(2):343-52. PubMed ID: 19173309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SUPERFAMILY database in 2004: additions and improvements.
    Madera M; Vogel C; Kummerfeld SK; Chothia C; Gough J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D235-9. PubMed ID: 14681402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of remotely related structural homologues using sequence profiles of aligned homologous protein structures.
    Namboori S; Srinivasan N; Pandit SB
    In Silico Biol; 2004; 4(4):445-60. PubMed ID: 15506994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways.
    Rekha N; Machado SM; Narayanan C; Krupa A; Srinivasan N
    Proteins; 2005 Feb; 58(2):339-53. PubMed ID: 15562516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversity of domain superfamilies in the CATH database.
    Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA
    J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure.
    Gough J; Karplus K; Hughey R; Chothia C
    J Mol Biol; 2001 Nov; 313(4):903-19. PubMed ID: 11697912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.
    Standley DM; Toh H; Nakamura H
    Proteins; 2008 Sep; 72(4):1333-51. PubMed ID: 18384072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches.
    Aravind L; Koonin EV
    J Mol Biol; 1999 Apr; 287(5):1023-40. PubMed ID: 10222208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allergens are distributed into few protein families and possess a restricted number of biochemical functions.
    Radauer C; Bublin M; Wagner S; Mari A; Breiteneder H
    J Allergy Clin Immunol; 2008 Apr; 121(4):847-52.e7. PubMed ID: 18395549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On single and multiple models of protein families for the detection of remote sequence relationships.
    Casbon JA; Saqi MA
    BMC Bioinformatics; 2006 Jan; 7():48. PubMed ID: 16448555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EyeSite: a semi-automated database of protein families in the eye.
    Lee DA; Fefeu S; Edo-Ukeh AA; Orengo CA; Slingsby C
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D148-52. PubMed ID: 14681381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The size distribution of protein families within different types of folds.
    Liu X; Lv B; Guo W
    Biochem Biophys Res Commun; 2011 Mar; 406(2):218-22. PubMed ID: 21303659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EVEREST: a collection of evolutionary conserved protein domains.
    Portugaly E; Linial N; Linial M
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D241-6. PubMed ID: 17099230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.