These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15113418)

  • 1. Characterization of digital medical images utilizing support vector machines.
    Maglogiannis IG; Zafiropoulos EP
    BMC Med Inform Decis Mak; 2004 Mar; 4():4. PubMed ID: 15113418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin lesion classification using relative color features.
    Cheng Y; Swamisai R; Umbaugh SE; Moss RH; Stoecker WV; Teegala S; Srinivasan SK
    Skin Res Technol; 2008 Feb; 14(1):53-64. PubMed ID: 18211602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated computer supported acquisition, handling, and characterization system for pigmented skin lesions in dermatological images.
    Maglogiannis I; Pavlopoulos S; Koutsouris D
    IEEE Trans Inf Technol Biomed; 2005 Mar; 9(1):86-98. PubMed ID: 15787011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network.
    Binder M; Kittler H; Seeber A; Steiner A; Pehamberger H; Wolff K
    Melanoma Res; 1998 Jun; 8(3):261-6. PubMed ID: 9664148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational vision systems for the detection of malignant melanoma.
    Maglogiannis I; Kosmopoulos DI
    Oncol Rep; 2006; 15(4):1027-1032. PubMed ID: 16525695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution ultrasound reflex transmission imaging and digital photography: potential tools for the quantitative assessment of pigmented lesions.
    Rallan D; Dickson M; Bush NL; Harland CC; Mortimer P; Bamber JC
    Skin Res Technol; 2006 Feb; 12(1):50-9. PubMed ID: 16420539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated decision support in melanocytic lesion management.
    Gilmore SJ
    PLoS One; 2018; 13(9):e0203459. PubMed ID: 30192804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-spectral image analysis and classification of melanoma using fuzzy membership based partitions.
    Patwardhan SV; Dai S; Dhawan AP
    Comput Med Imaging Graph; 2005 Jun; 29(4):287-96. PubMed ID: 15890256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the diagnostic accuracy of dysplastic and melanoma lesions using the decision template combination method.
    Faal M; Miran Baygi MH; Kabir E
    Skin Res Technol; 2013 Feb; 19(1):e113-22. PubMed ID: 22672787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
    Premaladha J; Ravichandran KS
    J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malignant melanoma detection by Bag-of-Features classification.
    Situ N; Yuan X; Chen J; Zouridakis G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3110-3. PubMed ID: 19163365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The usefulness of single and combined clinical characteristics for the diagnosis of dysplastic naevi.
    Maiweg C; Gartmann H; Lippold A; Balkau D; Wischer W; Suter L
    Melanoma Res; 1992; 1(5-6):377-83. PubMed ID: 1422193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided epiluminescence microscopy of pigmented skin lesions: the value of clinical data for the classification process.
    Binder M; Kittler H; Dreiseitl S; Ganster H; Wolff K; Pehamberger H
    Melanoma Res; 2000 Dec; 10(6):556-61. PubMed ID: 11198477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital videomicroscopy and image analysis with automatic classification for detection of thin melanomas.
    Seidenari S; Pellacani G; Giannetti A
    Melanoma Res; 1999 Apr; 9(2):163-71. PubMed ID: 10380939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dermoscopic diagnosis of melanoma in a 4D space constructed by active contour extracted features.
    Mete M; Sirakov NM
    Comput Med Imaging Graph; 2012 Oct; 36(7):572-9. PubMed ID: 22819294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of specific parameters for skin tumour classification.
    Messadi M; Bessaid A; Taleb-Ahmed A
    J Med Eng Technol; 2009; 33(4):288-95. PubMed ID: 19384704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer image analysis of pigmented skin lesions.
    Green A; Martin N; McKenzie G; Pfitzner J; Quintarelli F; Thomas BW; O'Rourke M; Knight N
    Melanoma Res; 1991; 1(4):231-6. PubMed ID: 1823631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution quantification on dermoscopy images for computer-assisted diagnosis of cutaneous melanomas.
    Liu Z; Sun J; Smith L; Smith M; Warr R
    Med Biol Eng Comput; 2012 May; 50(5):503-13. PubMed ID: 22438064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study.
    Binder M; Steiner A; Schwarz M; Knollmayer S; Wolff K; Pehamberger H
    Br J Dermatol; 1994 Apr; 130(4):460-5. PubMed ID: 8186110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated melanoma detection: multispectral imaging and neural network approach for classification.
    Tomatis S; Bono A; Bartoli C; Carrara M; Lualdi M; Tragni G; Marchesini R
    Med Phys; 2003 Feb; 30(2):212-21. PubMed ID: 12607839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.