These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 15113564)
1. Multivitamin production in Lactococcus lactis using metabolic engineering. Sybesma W; Burgess C; Starrenburg M; van Sinderen D; Hugenholtz J Metab Eng; 2004 Apr; 6(2):109-15. PubMed ID: 15113564 [TBL] [Abstract][Full Text] [Related]
2. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Burgess C; O'connell-Motherway M; Sybesma W; Hugenholtz J; van Sinderen D Appl Environ Microbiol; 2004 Oct; 70(10):5769-77. PubMed ID: 15466513 [TBL] [Abstract][Full Text] [Related]
3. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria. Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR mBio; 2017 May; 8(3):. PubMed ID: 28559484 [TBL] [Abstract][Full Text] [Related]
4. Increased production of folate by metabolic engineering of Lactococcus lactis. Sybesma W; Starrenburg M; Kleerebezem M; Mierau I; de Vos WM; Hugenholtz J Appl Environ Microbiol; 2003 Jun; 69(6):3069-76. PubMed ID: 12788700 [TBL] [Abstract][Full Text] [Related]
5. Biofortification of riboflavin and folate in idli batter, based on fermented cereal and pulse, by Lactococcus lactis N8 and Saccharomyces boulardii SAA655. Chandrasekar Rajendran SC; Chamlagain B; Kariluoto S; Piironen V; Saris PEJ J Appl Microbiol; 2017 Jun; 122(6):1663-1671. PubMed ID: 28339160 [TBL] [Abstract][Full Text] [Related]
6. Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats. LeBlanc JG; Burgess C; Sesma F; Savoy de Giori G; van Sinderen D J Dairy Sci; 2005 Oct; 88(10):3435-42. PubMed ID: 16162516 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Wegkamp A; van Oorschot W; de Vos WM; Smid EJ Appl Environ Microbiol; 2007 Apr; 73(8):2673-81. PubMed ID: 17308179 [TBL] [Abstract][Full Text] [Related]
8. Nutraceutical production with food-grade microorganisms. Hugenholtz J; Smid EJ Curr Opin Biotechnol; 2002 Oct; 13(5):497-507. PubMed ID: 12459344 [TBL] [Abstract][Full Text] [Related]
9. Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. LeBlanc JG; Sybesma W; Starrenburg M; Sesma F; de Vos WM; de Giori GS; Hugenholtz J Nutrition; 2010; 26(7-8):835-41. PubMed ID: 19931414 [TBL] [Abstract][Full Text] [Related]
10. Lactococcus lactis is capable of improving the riboflavin status in deficient rats. LeBlanc JG; Burgess C; Sesma F; de Giori GS; van Sinderen D Br J Nutr; 2005 Aug; 94(2):262-7. PubMed ID: 16115361 [TBL] [Abstract][Full Text] [Related]
11. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. Burgess CM; Slotboom DJ; Geertsma ER; Duurkens RH; Poolman B; van Sinderen D J Bacteriol; 2006 Apr; 188(8):2752-60. PubMed ID: 16585736 [TBL] [Abstract][Full Text] [Related]
12. Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Pool WA; Neves AR; Kok J; Santos H; Kuipers OP Metab Eng; 2006 Sep; 8(5):456-64. PubMed ID: 16844396 [TBL] [Abstract][Full Text] [Related]
13. Controlled modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis. Sybesma W; Van Den Born E; Starrenburg M; Mierau I; Kleerebezem M; De Vos WM; Hugenholtz J Appl Environ Microbiol; 2003 Dec; 69(12):7101-7. PubMed ID: 14660354 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Dmytruk KV; Yatsyshyn VY; Sybirna NO; Fedorovych DV; Sibirny AA Metab Eng; 2011 Jan; 13(1):82-8. PubMed ID: 21040798 [TBL] [Abstract][Full Text] [Related]
15. Transformation of folate-consuming Lactobacillus gasseri into a folate producer. Wegkamp A; Starrenburg M; de Vos WM; Hugenholtz J; Sybesma W Appl Environ Microbiol; 2004 May; 70(5):3146-8. PubMed ID: 15128580 [TBL] [Abstract][Full Text] [Related]
16. Production of xylitol from D-xylose by recombinant Lactococcus lactis. Nyyssölä A; Pihlajaniemi A; Palva A; von Weymarn N; Leisola M J Biotechnol; 2005 Jul; 118(1):55-66. PubMed ID: 15916828 [TBL] [Abstract][Full Text] [Related]
17. Membrane Protein Production in Lactococcus lactis for Functional Studies. Seigneurin-Berny D; King MS; Sautron E; Moyet L; Catty P; André F; Rolland N; Kunji ER; Frelet-Barrand A Methods Mol Biol; 2016; 1432():79-101. PubMed ID: 27485331 [TBL] [Abstract][Full Text] [Related]
18. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Fu RY; Bongers RS; van Swam II; Chen J; Molenaar D; Kleerebezem M; Hugenholtz J; Li Y Metab Eng; 2006 Nov; 8(6):662-71. PubMed ID: 16962352 [TBL] [Abstract][Full Text] [Related]
19. Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation. Levit R; Savoy de Giori G; de Moreno de LeBlanc A; LeBlanc JG J Appl Microbiol; 2021 May; 130(5):1412-1424. PubMed ID: 32955761 [TBL] [Abstract][Full Text] [Related]
20. Effects of cultivation conditions on folate production by lactic acid bacteria. Sybesma W; Starrenburg M; Tijsseling L; Hoefnagel MH; Hugenholtz J Appl Environ Microbiol; 2003 Aug; 69(8):4542-8. PubMed ID: 12902240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]