BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15113564)

  • 41. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures.
    Jeeva P; Shanmuga Doss S; Sundaram V; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4363-4375. PubMed ID: 30968163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous lactic acidification and coagulation by using recombinant Lactococcus lactis strain.
    Raftari M; Ghafourian S; Abu Bakar F
    J Appl Microbiol; 2017 Apr; 122(4):1009-1019. PubMed ID: 28028882
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells.
    Zhang B; Li A; Zuo F; Yu R; Zeng Z; Ma H; Chen S
    Microb Cell Fact; 2016 Jun; 15(1):102. PubMed ID: 27287327
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flavin binding to the high affinity riboflavin transporter RibU.
    Duurkens RH; Tol MB; Geertsma ER; Permentier HP; Slotboom DJ
    J Biol Chem; 2007 Apr; 282(14):10380-6. PubMed ID: 17289680
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins.
    Li P; Zhou Q; Gu Q
    J Biotechnol; 2016 Sep; 234():66-70. PubMed ID: 27480344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Construction and verification of Lactococcus lactis NZ9000 genome-scale metabolic model].
    Sun W; Zhang J; Du G
    Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1629-1639. PubMed ID: 32924361
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS.
    Ruggirello M; Giordano M; Bertolino M; Ferrocino I; Cocolin L; Dolci P
    Food Microbiol; 2018 Sep; 74():132-142. PubMed ID: 29706329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system.
    Liu F; Zhang Y; Qiao W; Zhu D; Xu H; Saris PEJ; Qiao M
    Microb Cell Fact; 2019 Nov; 18(1):198. PubMed ID: 31727072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
    Zhang M; Chen J; Zhang J; Du G
    J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.
    Kilstrup M; Martinussen J
    J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Glutathione plays an anti-oxidant role in Lactococcus lactis].
    Fu RY; Chen J; Li Y
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):379-84. PubMed ID: 16933605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A dynamic, genome-scale flux model of Lactococcus lactis to increase specific recombinant protein expression.
    Oddone GM; Mills DA; Block DE
    Metab Eng; 2009 Nov; 11(6):367-81. PubMed ID: 19666133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review on Lactococcus lactis: from food to factory.
    Song AA; In LLA; Lim SHE; Rahim RA
    Microb Cell Fact; 2017 Apr; 16(1):55. PubMed ID: 28376880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic pathway engineering in lactic acid bacteria.
    Kleerebezem M; Hugenholtz J
    Curr Opin Biotechnol; 2003 Apr; 14(2):232-7. PubMed ID: 12732327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preventative delivery of IL-35 by Lactococcus lactis ameliorates DSS-induced colitis in mice.
    Wang J; Tian M; Li W; Hao F
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):7931-7941. PubMed ID: 31456001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of genomic characteristics and carbohydrates' metabolic activity of Lactococcus lactis subsp. lactis during ripening of a Swiss-type cheese.
    Mataragas M
    Food Microbiol; 2020 May; 87():103392. PubMed ID: 31948633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.
    Li L; Kim SA; Heo JE; Kim TJ; Seo JH; Han NS
    J Biotechnol; 2017 Dec; 264():1-7. PubMed ID: 29050879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of 6-phosphofructokinase gene-pfk overexpression on nisin production in Lactococcus lactis N8].
    Zhu D; Zhao K; Xu H; Bai Y; Zhang X; Qiao M
    Wei Sheng Wu Xue Bao; 2015 Apr; 55(4):440-7. PubMed ID: 26211318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.