These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15113567)

  • 1. Non-linear reduction for kinetic models of metabolic reaction networks.
    Gerdtzen ZP; Daoutidis P; Hu WS
    Metab Eng; 2004 Apr; 6(2):140-54. PubMed ID: 15113567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic control analysis under uncertainty: framework development and case studies.
    Wang L; Birol I; Hatzimanikatis V
    Biophys J; 2004 Dec; 87(6):3750-63. PubMed ID: 15465856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining flux and energy balance analysis to model large-scale biochemical networks.
    Heuett WJ; Qian H
    J Bioinform Comput Biol; 2006 Dec; 4(6):1227-43. PubMed ID: 17245812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of living cell metabolism using the method of steady-state stoichiometric flux balance.
    Drozdov-Tikhomirov LN; Scurida GI; Davidov AV; Alexandrov AA; Zvyagilskaya RA
    J Bioinform Comput Biol; 2006 Aug; 4(4):865-85. PubMed ID: 17007072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.
    Visser D; Heijnen JJ
    Metab Eng; 2003 Jul; 5(3):164-76. PubMed ID: 12948750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving phylogenetic trees from the similarity analysis of metabolic pathways.
    Heymans M; Singh AK
    Bioinformatics; 2003; 19 Suppl 1():i138-46. PubMed ID: 12855450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes.
    Rantanen A; Mielikäinen T; Rousu J; Maaheimo H; Ukkonen E
    Bioinformatics; 2006 May; 22(10):1198-206. PubMed ID: 16504982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level.
    Snoep JL
    Curr Opin Biotechnol; 2005 Jun; 16(3):336-43. PubMed ID: 15922580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms.
    Ma H; Zeng AP
    Bioinformatics; 2003 Jan; 19(2):270-7. PubMed ID: 12538249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filling gaps in a metabolic network using expression information.
    Kharchenko P; Vitkup D; Church GM
    Bioinformatics; 2004 Aug; 20 Suppl 1():i178-85. PubMed ID: 15262797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectivity and expression in protein networks: proteins in a complex are uniformly expressed.
    Carmi S; Levanon EY; Havlin S; Eisenberg E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031909. PubMed ID: 16605560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
    Lebiedz D; Kammerer J; Brandt-Pollmann U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041911. PubMed ID: 16383424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.
    Grotkjaer T; Christakopoulos P; Nielsen J; Olsson L
    Metab Eng; 2005; 7(5-6):437-44. PubMed ID: 16140032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering under uncertainty--II: analysis of yeast metabolism.
    Wang L; Hatzimanikatis V
    Metab Eng; 2006 Mar; 8(2):142-59. PubMed ID: 16413809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Matrices Method for nonlinear system identification and description of dynamics of biochemical reaction networks.
    Karnaukhov AV; Karnaukhova EV; Williamson JR
    Biophys J; 2007 May; 92(10):3459-73. PubMed ID: 17350997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.