BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 15113693)

  • 41. Enhanced cleavage of diaminopimelate-containing isopeptides by leucine aminopeptidase and matrix metalloproteinases in tumors: application to bioadhesive peptides.
    Yamazaki Y; Savva M; Kleinman HK; Oka S; Mokotoff M
    J Pept Res; 1999 Feb; 53(2):177-87. PubMed ID: 10195455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin).
    Netzel-Arnett S; Sang QX; Moore WG; Navre M; Birkedal-Hansen H; Van Wart HE
    Biochemistry; 1993 Jun; 32(25):6427-32. PubMed ID: 8390857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Role of Membrane-Type 1 Matrix Metalloproteinase-Substrate Interactions in Pathogenesis.
    Lee H; Ibrahimi L; Azar DT; Han KY
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase. Implications for substrate optimization.
    McGeehan GM; Bickett DM; Green M; Kassel D; Wiseman JS; Berman J
    J Biol Chem; 1994 Dec; 269(52):32814-20. PubMed ID: 7806505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic characterization of lysine-specific metalloendopeptidases from Grifola frondosa and Pleurotus ostreatus fruiting bodies.
    Nonaka T; Hashimoto Y; Takio K
    J Biochem; 1998 Jul; 124(1):157-62. PubMed ID: 9644258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemical characterization of the catalytic domain of membrane-type 4 matrix metalloproteinase.
    Kolkenbrock H; Essers L; Ulbrich N; Will H
    Biol Chem; 1999 Sep; 380(9):1103-8. PubMed ID: 10543448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice.
    Kassiri Z; Oudit GY; Sanchez O; Dawood F; Mohammed FF; Nuttall RK; Edwards DR; Liu PP; Backx PH; Khokha R
    Circ Res; 2005 Aug; 97(4):380-90. PubMed ID: 16037568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescent substrates for the proteinases ADAM17, ADAM10, ADAM8, and ADAM12 useful for high-throughput inhibitor screening.
    Moss ML; Rasmussen FH
    Anal Biochem; 2007 Jul; 366(2):144-8. PubMed ID: 17548045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An internally quenched fluorescent substrate for collagenase.
    Saikumari YK; Balaram P
    Biopolymers; 2008; 90(2):131-7. PubMed ID: 18260138
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assays of matrix metalloproteinases (MMPs) activities: a review.
    Lombard C; Saulnier J; Wallach J
    Biochimie; 2005; 87(3-4):265-72. PubMed ID: 15781313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration.
    Lee SH; Moon JJ; Miller JS; West JL
    Biomaterials; 2007 Jul; 28(20):3163-70. PubMed ID: 17395258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors.
    Nakada M; Nakamura H; Ikeda E; Fujimoto N; Yamashita J; Sato H; Seiki M; Okada Y
    Am J Pathol; 1999 Feb; 154(2):417-28. PubMed ID: 10027400
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzymic characterization with progress curve analysis of a collagen peptidase from an enthomopathogenic bacterium, Photorhabdus luminescens.
    Marokházi J; Kóczán G; Hudecz F; Gráf L; Fodor A; Venekei I
    Biochem J; 2004 May; 379(Pt 3):633-40. PubMed ID: 14744262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease.
    Stöcker W; Ng M; Auld DS
    Biochemistry; 1990 Nov; 29(45):10418-25. PubMed ID: 2261483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and biological activity of piperazine-based dual MMP-13 and TNF-alpha converting enzyme inhibitors.
    Letavic MA; Barberia JT; Carty TJ; Hardink JR; Liras J; Lopresti-Morrow LL; Mitchell PG; Noe MC; Reeves LM; Snow SL; Stam EJ; Sweeney FJ; Vaughn ML; Yu CH
    Bioorg Med Chem Lett; 2003 Oct; 13(19):3243-6. PubMed ID: 12951101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescent substrates useful as high-throughput screening tools for ADAM9.
    Moss ML; Rasmussen FH; Nudelman R; Dempsey PJ; Williams J
    Comb Chem High Throughput Screen; 2010 May; 13(4):358-65. PubMed ID: 20015014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential activation of endopeptidase EC 3.4.24.15 toward natural and synthetic substrates by metal ions.
    Wolfson AJ; Shrimpton CN; Lew RA; Smith AI
    Biochem Biophys Res Commun; 1996 Dec; 229(1):341-8. PubMed ID: 8954129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The evaluation of inhibitive effectiveness of the tumour necrosis factor-α converting enzyme selective inhibitors by HPLC.
    Zhao Y; Yu J; Gu J; Huang W
    J Enzyme Inhib Med Chem; 2011 Apr; 26(2):181-7. PubMed ID: 21406033
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane type-1 matrix metalloprotease and stromelysin-3 cleave more efficiently synthetic substrates containing unusual amino acids in their P1' positions.
    Mucha A; Cuniasse P; Kannan R; Beau F; Yiotakis A; Basset P; Dive V
    J Biol Chem; 1998 Jan; 273(5):2763-8. PubMed ID: 9446583
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.