These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15113935)

  • 1. Intracellular copper transport in mammals.
    Prohaska JR; Gybina AA
    J Nutr; 2004 May; 134(5):1003-6. PubMed ID: 15113935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of copper transporters in copper homeostasis.
    Prohaska JR
    Am J Clin Nutr; 2008 Sep; 88(3):826S-9S. PubMed ID: 18779302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of copper chaperone for superoxide dismutase 1 and metallothionein in copper homeostasis.
    Miyayama T; Ishizuka Y; Iijima T; Hiraoka D; Ogra Y
    Metallomics; 2011 Jul; 3(7):693-701. PubMed ID: 21409224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action.
    Markossian KA; Kurganov BI
    Biochemistry (Mosc); 2003 Aug; 68(8):827-37. PubMed ID: 12948382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase.
    Horng YC; Cobine PA; Maxfield AB; Carr HS; Winge DR
    J Biol Chem; 2004 Aug; 279(34):35334-40. PubMed ID: 15199057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular copper transport and metabolism.
    Harris ED
    Annu Rev Nutr; 2000; 20():291-310. PubMed ID: 10940336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended functional repertoire for human copper chaperones.
    Matson Dzebo M; Ariöz C; Wittung-Stafshede P
    Biomol Concepts; 2016 Feb; 7(1):29-39. PubMed ID: 26745464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal regulation of copper homeostasis: a developmental perspective.
    Lönnerdal B
    Am J Clin Nutr; 2008 Sep; 88(3):846S-50S. PubMed ID: 18779306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptidylglycine α-amidating monooxygenase heterozygosity alters brain copper handling with region specificity.
    Gaier ED; Miller MB; Ralle M; Aryal D; Wetsel WC; Mains RE; Eipper BA
    J Neurochem; 2013 Dec; 127(5):605-19. PubMed ID: 24032518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper transport systems are involved in multidrug resistance and drug transport.
    Furukawa T; Komatsu M; Ikeda R; Tsujikawa K; Akiyama S
    Curr Med Chem; 2008; 15(30):3268-78. PubMed ID: 19075668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper transporting P-type ATPases and human disease.
    Cox DW; Moore SD
    J Bioenerg Biomembr; 2002 Oct; 34(5):333-8. PubMed ID: 12539960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum.
    Barnes N; Tsivkovskii R; Tsivkovskaia N; Lutsenko S
    J Biol Chem; 2005 Mar; 280(10):9640-5. PubMed ID: 15634671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atox1 deletion in Drosophila.
    Hua H; Günther V; Georgiev O; Schaffner W
    Biometals; 2011 Jun; 24(3):445-53. PubMed ID: 21465178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development: Role of MicroRNA-125b.
    Sudhahar V; Das A; Horimatsu T; Ash D; Leanhart S; Antipova O; Vogt S; Singla B; Csanyi G; White J; Kaplan JH; Fulton D; Weintraub NL; Kim HW; Ushio-Fukai M; Fukai T
    Arterioscler Thromb Vasc Biol; 2019 Nov; 39(11):2320-2337. PubMed ID: 31554420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux.
    Leary SC; Cobine PA; Nishimura T; Verdijk RM; de Krijger R; de Coo R; Tarnopolsky MA; Winge DR; Shoubridge EA
    Mol Biol Cell; 2013 Mar; 24(6):683-91. PubMed ID: 23345593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.
    Cater MA; Forbes J; La Fontaine S; Cox D; Mercer JF
    Biochem J; 2004 Jun; 380(Pt 3):805-13. PubMed ID: 14998371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A.
    Lim CM; Cater MA; Mercer JF; La Fontaine S
    J Biol Chem; 2006 May; 281(20):14006-14. PubMed ID: 16554302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells.
    Zheng G; Zhang J; Xu Y; Shen X; Song H; Jing J; Luo W; Zheng W; Chen J
    Toxicol Lett; 2014 Feb; 225(1):110-8. PubMed ID: 24316150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase.
    Leary SC; Kaufman BA; Pellecchia G; Guercin GH; Mattman A; Jaksch M; Shoubridge EA
    Hum Mol Genet; 2004 Sep; 13(17):1839-48. PubMed ID: 15229189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation of copper (Cu) homeostasis and expression of Cu-binding proteins in cadmium-resistant lung fibroblasts.
    Chou DK; Zhao Y; Gao S; Chou IN; Toselli P; Stone P; Li W
    Toxicol Sci; 2007 Sep; 99(1):267-76. PubMed ID: 17584760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.