BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15115182)

  • 1. Role of amino acid residues on the GS region of Stichopus arginine kinase and Danio creatine kinase.
    Uda K; Suzuki T
    Protein J; 2004 Jan; 23(1):53-64. PubMed ID: 15115182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase.
    Fujimoto N; Tanaka K; Suzuki T
    FEBS Lett; 2005 Mar; 579(7):1688-92. PubMed ID: 15757662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure.
    Zhang JW; Zhao TJ; Wang SL; Guo Q; Liu TT; Zhao F; Wang XC
    Int J Biol Macromol; 2006 May; 38(3-5):203-10. PubMed ID: 16574215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two fused proteins combining Stichopus japonicus arginine kinase and rabbit muscle creatine kinase.
    Zhang JW; Guo Q; Zhao TJ; Liu TT; Wang XC
    Biochemistry (Mosc); 2006 Sep; 71(9):983-8. PubMed ID: 17009952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic properties and structural characteristics of an unusual two-domain arginine kinase of the clam Corbicula japonica.
    Suzuki T; Tomoyuki T; Uda K
    FEBS Lett; 2003 Jan; 533(1-3):95-8. PubMed ID: 12505165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of the conserved G66 residue in GS region decreased structural stability and activity of arginine kinase.
    Wu QY; Zhu YY; Wei F; Tong YX; Cao J; Zhou P; Li ZY; Zeng LY; Li F; Wang XY; Xu KL
    Int J Biol Macromol; 2018 May; 111():247-254. PubMed ID: 29325742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The D14 and R138 ion pair is involved in dimeric arginine kinase activity, structural stability and folding.
    Geng HL; Bian MR; Liu Y; Cao J; Chen C; Wang ZY; Li ZY; Zeng LY; Wang XY; Wu QY; Xu KL
    Int J Biol Macromol; 2014 May; 66():302-10. PubMed ID: 24582938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction between residues 62 and 193 play a key role in activity and structural stability of arginine kinase.
    Liu N; Wang JS; Wang WD; Pan JC
    Int J Biol Macromol; 2011 Oct; 49(3):402-8. PubMed ID: 21645540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution.
    Uda K; Ellington WR; Suzuki T
    Gene; 2012 Apr; 497(2):214-27. PubMed ID: 22305986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K; Iseno S; Uda K; Suzuki T
    Gene; 2009 May; 437(1-2):80-7. PubMed ID: 19268694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization of matrix-bound MM-creatine kinase with BB-creatine kinase and arginine kinase.
    Reddy SR; Watts DC
    Comp Biochem Physiol Biochem Mol Biol; 1994 May; 108(1):73-8. PubMed ID: 8205393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid).
    Feng Z; Qin G; Xicheng W
    Int J Biol Macromol; 2005 Aug; 36(3):184-90. PubMed ID: 16038973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T273 plays an important role in the activity and structural stability of arginine kinase.
    Wu QY; Guo HY; Geng HL; Ru BM; Cao J; Chen C; Zeng LY; Wang XY; Li F; Xu KL
    Int J Biol Macromol; 2014 Feb; 63():21-8. PubMed ID: 24157705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperativity in the two-domain arginine kinase from the sea anemone Anthopleura japonicus.
    Tada H; Nishimura Y; Suzuki T
    Int J Biol Macromol; 2008 Jan; 42(1):46-51. PubMed ID: 17950825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.