These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15115185)

  • 1. Detection of tryptophan to tryptophan energy transfer in proteins.
    Moens PD; Helms MK; Jameson DM
    Protein J; 2004 Jan; 23(1):79-83. PubMed ID: 15115185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of resonance energy homotransfer on the intrinsic tryptophan fluorescence emission of the bothropstoxin-I dimer.
    de Oliveira AH; Giglio JR; Andrião-Escarso SH; Ward RJ
    Biochem Biophys Res Commun; 2001 Jun; 284(4):1011-5. PubMed ID: 11409896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Polarization of intrinsic fluorescence of proteins. II. Application for the study of equilibrium dynamics of tryptophan residues].
    Turoverov KK; Kuznetsova IM
    Mol Biol (Mosk); 1983; 17(3):468-74. PubMed ID: 6877228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The red-edge effects: 30 years of exploration.
    Demchenko AP
    Luminescence; 2002; 17(1):19-42. PubMed ID: 11816059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques.
    Ghisaidoobe AB; Chung SJ
    Int J Mol Sci; 2014 Dec; 15(12):22518-38. PubMed ID: 25490136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence heterogeneity of tryptophans in Na,K-ATPase: evidences for temperature-dependent energy transfer.
    Demchenko AP; Gallay J; Vincent M; Apell HJ
    Biophys Chem; 1998 Jun; 72(3):265-83. PubMed ID: 9691270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins.
    Visser NV; Borst JW; Hink MA; van Hoek A; Visser AJ
    Biophys Chem; 2005 Aug; 116(3):207-12. PubMed ID: 15893413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the excited-state energy transfer between tryptophan residues in proteins: the case of penicillin acylase.
    Ercelen S; Kazan D; Erarslan A; Demchenko AP
    Biophys Chem; 2001 May; 90(3):203-17. PubMed ID: 11407639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What causes the depolarization of trypsin and trypsinogen fluorescence. Intramolecular mobility or non-radiative energy transfer?
    Turoverov KK; Kuznetsova IM
    Biophys Chem; 1986 Dec; 25(3):315-23. PubMed ID: 3828470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motions studies of the human alpha 1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and polarization of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tryptophan residues.
    Albani J
    Biophys Chem; 1992 Sep; 44(2):129-37. PubMed ID: 1391608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubulin conformation and dynamics: a red edge excitation shift study.
    Guha S; Rawat SS; Chattopadhyay A; Bhattacharyya B
    Biochemistry; 1996 Oct; 35(41):13426-33. PubMed ID: 8873611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward understanding tryptophan fluorescence in proteins.
    Chen Y; Barkley MD
    Biochemistry; 1998 Jul; 37(28):9976-82. PubMed ID: 9665702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor.
    Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M
    Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin.
    Sytnik A; Litvinyuk I
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12959-63. PubMed ID: 8917526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.
    Albani JR
    J Fluoresc; 2007 Jul; 17(4):406-17. PubMed ID: 17458686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.