These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15115247)

  • 1. The Microfiltrometer (MicroFM): a new filtration device for the assessment of less deformable erythrocyte subpopulations.
    Amoussou-Guenou KM; Martinsen OG; Squitiero B; Rusch P; Healy JC
    Scand J Clin Lab Invest; 2004 Apr; 64(2):108-12. PubMed ID: 15115247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic principles for evaluation of less deformable erythrocyte subpopulations with the Microfiltrometer.
    Amoussou-Guenou KM; Martinsen OG; Hounkponou M; Doumit J; Healy JC
    Scand J Clin Lab Invest; 2004; 64(3):169-74. PubMed ID: 15222626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The expression of red blood cell deformability in micropore filtration tests].
    Niu X; Yan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Dec; 18(4):615-9. PubMed ID: 11791322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of erythrocyte transit times through micropores. II-- Influence of experimental and physicochemical factors.
    Koutsouris D; Guillet R; Wenby RB; Meiselman HJ
    Biorheology; 1988; 25(5):773-90. PubMed ID: 3252927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of erythrocyte transit times through micropores. II. Influence of experimental and physicochemical factors.
    Koutsouris D; Guillet R; Wenby RB; Meiselman HJ
    Biorheology; 1989; 26(5):881-98. PubMed ID: 2620086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheologic and pathophysiologic significance of red cell passage through narrow pores.
    Nakamura T; Hasegawa S; Shio H; Uyesaka N
    Blood Cells; 1994; 20(1):151-65; discussion 166-8. PubMed ID: 7994058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability.
    Ju M; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2017; 65(2):105-117. PubMed ID: 27447420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further characterization of the effects of alpha-1-acid glycoprotein on the passage of human erythrocytes through micropores.
    Maeda H; Morinaga T; Mori I; Nishi K
    Cell Struct Funct; 1984 Sep; 9(3):279-90. PubMed ID: 6509569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell deformability in sepsis.
    Baskurt OK; Gelmont D; Meiselman HJ
    Am J Respir Crit Care Med; 1998 Feb; 157(2):421-7. PubMed ID: 9476853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film.
    Ogura E; Abatti PJ; Moriizumi T
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):721-6. PubMed ID: 1937504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Micropore filters for measuring red blood cell deformability and their pore diameters].
    Niu X; Yan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):466-9. PubMed ID: 11605518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and filterability of red blood cells in neonatal and adult rats.
    Engström KG; Ohlsson L
    Pediatr Res; 1990 Mar; 27(3):220-6. PubMed ID: 2320387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability.
    Lipowsky HH; Cram LE; Justice W; Eppihimer MJ
    Microvasc Res; 1993 Jul; 46(1):43-64. PubMed ID: 8412852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrophil retention in model capillaries: deformability, geometry, and hydrodynamic forces.
    Downey GP; Worthen GS
    J Appl Physiol (1985); 1988 Oct; 65(4):1861-71. PubMed ID: 3182546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The measurement of erythrocyte deformability using micropore membranes. A sensitive technique with clinical applications.
    Leblond PF; Coulombe L
    J Lab Clin Med; 1979 Jul; 94(1):133-43. PubMed ID: 469370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new device for the routine measurement of erythrocyte deformability.
    Roggenkamp HG; Jung F; Schneider R; Kiesewetter H
    Biorheology Suppl; 1984; 1():241-3. PubMed ID: 6591982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passage time measurement of individual red blood cells through arrayed micropores on Si3N4 membrane.
    Ogura E; Kusumoputro B; Moriizumi T
    J Biomed Eng; 1991 Nov; 13(6):503-6. PubMed ID: 1770812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of erythrocyte transit times through micropores. I--Basic operational principles.
    Koutsouris D; Guillet R; Lelievre JC; Guillemin MT; Bertholom P; Beuzard Y; Boynard M
    Biorheology; 1988; 25(5):763-72. PubMed ID: 3252926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.