These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15115319)

  • 21. Pre- and postsynaptic inhibition mediated by GABA(B) receptors in cerebellar inhibitory interneurons.
    Mann-Metzer P; Yarom Y
    J Neurophysiol; 2002 Jan; 87(1):183-90. PubMed ID: 11784741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presynaptic inactivation of action potentials and postsynaptic inhibition of GABAA currents contribute to KA-induced disinhibition in CA1 pyramidal neurons.
    Kang N; Jiang L; He W; Xu J; Nedergaard M; Kang J
    J Neurophysiol; 2004 Aug; 92(2):873-82. PubMed ID: 14999044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy.
    Esclapez M; Hirsch JC; Khazipov R; Ben-Ari Y; Bernard C
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):12151-6. PubMed ID: 9342378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postnatal maturation of GABA(A) and GABA(C) receptor function in the mammalian superior colliculus.
    Boller M; Schmidt M
    Eur J Neurosci; 2001 Oct; 14(8):1185-93. PubMed ID: 11703447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release.
    Lauri SE; Vesikansa A; Segerstråle M; Collingridge GL; Isaac JT; Taira T
    Neuron; 2006 May; 50(3):415-29. PubMed ID: 16675396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons.
    Bai D; Zhu G; Pennefather P; Jackson MF; MacDonald JF; Orser BA
    Mol Pharmacol; 2001 Apr; 59(4):814-24. PubMed ID: 11259626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors.
    Min MY; Melyan Z; Kullmann DM
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9932-7. PubMed ID: 10449797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presynaptic kainate receptor activation preserves asynchronous GABA release despite the reduction in synchronous release from hippocampal cholecystokinin interneurons.
    Daw MI; Pelkey KA; Chittajallu R; McBain CJ
    J Neurosci; 2010 Aug; 30(33):11202-9. PubMed ID: 20720128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Presynaptic kainate receptors that enhance the release of GABA on CA1 hippocampal interneurons.
    Cossart R; Tyzio R; Dinocourt C; Esclapez M; Hirsch JC; Ben-Ari Y; Bernard C
    Neuron; 2001 Feb; 29(2):497-508. PubMed ID: 11239438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment.
    Morin F; Beaulieu C; Lacaille JC
    J Neurophysiol; 1998 Dec; 80(6):2836-47. PubMed ID: 9862888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hippocampal CA1 lacunosum-moleculare interneurons: comparison of effects of anoxia on excitatory and inhibitory postsynaptic currents.
    Khazipov R; Congar P; Ben-Ari Y
    J Neurophysiol; 1995 Nov; 74(5):2138-49. PubMed ID: 8592202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mosaic of functional kainate receptors in hippocampal interneurons.
    Christensen JK; Paternain AV; Selak S; Ahring PK; Lerma J
    J Neurosci; 2004 Oct; 24(41):8986-93. PubMed ID: 15483117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kindling enhances kainate receptor-mediated depression of GABAergic inhibition in rat granule cells.
    Behr J; Gebhardt C; Heinemann U; Mody I
    Eur J Neurosci; 2002 Sep; 16(5):861-7. PubMed ID: 12372022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus.
    Song W; Chattipakorn SC; McMahon LL
    J Neurophysiol; 2006 Apr; 95(4):2366-79. PubMed ID: 16381810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons.
    Ji D; Dani JA
    J Neurophysiol; 2000 May; 83(5):2682-90. PubMed ID: 10805668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation.
    Clarke VR; Collingridge GL; Lauri SE; Taira T
    J Neurosci; 2012 Dec; 32(50):18215-26. PubMed ID: 23238735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monosynaptic GABA-mediated inhibitory postsynaptic potentials in CA1 pyramidal cells of hyperexcitable hippocampal slices from kainic acid-treated rats.
    Williams S; Vachon P; Lacaille JC
    Neuroscience; 1993 Feb; 52(3):541-54. PubMed ID: 8095707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors.
    Khazipov R; Congar P; Ben-Ari Y
    J Neurophysiol; 1995 Nov; 74(5):2126-37. PubMed ID: 8592201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.