BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15115781)

  • 1. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site.
    Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M
    J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further stabilization of Leu¹⁵⁵ mutant thermolysins by mutation of an autodegradation site.
    Matsumiya Y; Murata N; Inouye K; Kubo M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):735-43. PubMed ID: 22139731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational effect for stability in a conserved region of thermolysin.
    Matsumiya Y; Nishikawa K; Inouye K; Kubo M
    Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the mutational combinations on the activity and stability of thermolysin.
    Kusano M; Yasukawa K; Inouye K
    J Biotechnol; 2010 May; 147(1):7-16. PubMed ID: 20214932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability.
    Kojima K; Nakata H; Inouye K
    Biochim Biophys Acta; 2014 Feb; 1844(2):330-8. PubMed ID: 24192395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization.
    Kawasaki Y; Yasukawa K; Inouye K
    J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the activity and stability of thermolysin by site-directed mutagenesis.
    Yasukawa K; Inouye K
    Biochim Biophys Acta; 2007 Oct; 1774(10):1281-8. PubMed ID: 17869197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability.
    Takita T; Aono T; Sakurama H; Itoh T; Wada T; Minoda M; Yasukawa K; Inouye K
    Biochim Biophys Acta; 2008 Mar; 1784(3):481-8. PubMed ID: 18187054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.
    Menach E; Yasukawa K; Inouye K
    J Biochem; 2012 Sep; 152(3):231-9. PubMed ID: 22648563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions.
    Ben Mabrouk S; Aghajari N; Ben Ali M; Ben Messaoud E; Juy M; Haser R; Bejar S
    Bioresour Technol; 2011 Jan; 102(2):1740-6. PubMed ID: 20855205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity.
    de Kreij A; van den Burg B; Veltman OR; Vriend G; Venema G; Eijsink VG
    Eur J Biochem; 2001 Sep; 268(18):4985-91. PubMed ID: 11559368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-point amino acid substitutions at the 119th residue of thermolysin and their pressure-induced activation.
    Kunugi S; Fujiwara S; Kidokoro S; Endo K; Hanzawa S
    FEBS Lett; 1999 Dec; 462(3):231-5. PubMed ID: 10622701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Substitution of Surface Acidic Residues for Enhancing the Thermostability of Thermolysin.
    Zhu F; Zhuang Y; Wu B; Li J; He B
    Appl Biochem Biotechnol; 2016 Feb; 178(4):725-38. PubMed ID: 26515979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostabilization of porcine kidney D-amino acid oxidase by a single amino acid substitution.
    Bakke M; Setoyama C; Miura R; Kajiyama N
    Biotechnol Bioeng; 2006 Apr; 93(5):1023-7. PubMed ID: 16245349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific interactions and binding free energies between thermolysin and dipeptides: molecular simulations combined with ab initio molecular orbital and classical vibrational analysis.
    Dedachi K; Hirakawa T; Fujita S; Khan MT; Sylte I; Kurita N
    J Comput Chem; 2011 Nov; 32(14):3047-57. PubMed ID: 21815174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a neutral zinc endopeptidase secreted by Flavobacterium meningosepticum.
    Grimwood BG; Plummer TH; Tarentino AL
    Arch Biochem Biophys; 1994 May; 311(1):127-32. PubMed ID: 8185308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; Van Den Burg B; Venema G; Stulp BK
    Protein Eng; 1990 Oct; 4(1):99-104. PubMed ID: 2127107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mutations of thermolysin, as N116 to asp and asp150 to glu, on salt-induced activation and stabilization.
    Menach E; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(4):741-6. PubMed ID: 23563542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.