These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15115783)

  • 1. Dynamics and reproducibility of a moderately complex sensory-motor response in the medicinal leech.
    Garcia-Perez E; Zoccolan D; Pinato G; Torre V
    J Neurophysiol; 2004 Sep; 92(3):1783-95. PubMed ID: 15115783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of motor neurons that contain a FMRFamidelike peptide and the effects of FMRFamide on longitudinal muscle in the medicinal leech, Hirudo medicinalis.
    Norris BJ; Calabrese RL
    J Comp Neurol; 1987 Dec; 266(1):95-111. PubMed ID: 3323268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of mechanosensory responses by motoneurons that regulate skin surface topology in the leech.
    Rodriguez MJ; Iscla IR; Szczupak L
    J Neurophysiol; 2004 May; 91(5):2366-75. PubMed ID: 15069103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling neuromuscular modulation in Aplysia. III. Interaction of central motor commands and peripheral modulatory state for optimal behavior.
    Brezina V; Horn CC; Weiss KR
    J Neurophysiol; 2005 Mar; 93(3):1523-56. PubMed ID: 15469963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed motor pattern underlying whole-body shortening in the medicinal leech.
    Arisi I; Zoccolan D; Torre V
    J Neurophysiol; 2001 Nov; 86(5):2475-88. PubMed ID: 11698536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using optical flow to characterize sensory-motor interactions in a segment of the medicinal leech.
    Zoccolan D; Torre V
    J Neurosci; 2002 Mar; 22(6):2283-98. PubMed ID: 11896168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The whole-body shortening reflex of the medicinal leech: motor pattern, sensory basis, and interneuronal pathways.
    Shaw BK; Kristan WB
    J Comp Physiol A; 1995 Dec; 177(6):667-81. PubMed ID: 8537936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly variable spike trains underlie reproducible sensorimotor responses in the medicinal leech.
    Zoccolan D; Pinato G; Torre V
    J Neurosci; 2002 Dec; 22(24):10790-800. PubMed ID: 12486172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-Specific Motor Efference during a Rhythmic Motor Pattern.
    Alonso I; Sanchez Merlinsky A; Szczupak L
    J Neurosci; 2020 Feb; 40(9):1888-1896. PubMed ID: 31980584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of spontaneous and evoked behaviors in the medicinal leech.
    Reynolds SA; French KA; Baader A; Kristan WB
    J Comp Neurol; 1998 Dec; 402(2):168-80. PubMed ID: 9845241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output pattern.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1683-92. PubMed ID: 1479438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interneuronal and motor patterns during crawling behavior of semi-intact leeches.
    Baader AP
    J Exp Biol; 1997 May; 200(Pt 9):1369-81. PubMed ID: 9172419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory modification of leech swimming: rhythmic activity of ventral stretch receptors can change intersegmental phase relationships.
    Cang J; Friesen WO
    J Neurosci; 2000 Oct; 20(20):7822-9. PubMed ID: 11027247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed processing of sensory information in the leech. I. Input-output relations of the local bending reflex.
    Lockery SR; Kristan WB
    J Neurosci; 1990 Jun; 10(6):1811-5. PubMed ID: 2355251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using reflexive behaviors of the medicinal leech to study information processing.
    Kristan WB; Lockery SR; Lewis JE
    J Neurobiol; 1995 Jul; 27(3):380-9. PubMed ID: 7673896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two forms of sensitization of the local bending reflex of the medicinal leech.
    Lockery SR; Kristan WB
    J Comp Physiol A; 1991 Feb; 168(2):165-77. PubMed ID: 2046043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals.
    Wenning A; Cymbalyuk GS; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):382-96. PubMed ID: 13679406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech.
    Crisp KM; Mesce KA
    J Exp Biol; 2004 Dec; 207(Pt 26):4535-42. PubMed ID: 15579549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neuromuscular transform in a single segment of a segmented heart tube.
    Wenning A; Chang YR; Norris BJ; Calabrese RL
    J Neurophysiol; 2020 Sep; 124(3):914-929. PubMed ID: 32755357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.