BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 15115854)

  • 1. Feature-based prediction of non-classical and leaderless protein secretion.
    Bendtsen JD; Jensen LJ; Blom N; Von Heijne G; Brunak S
    Protein Eng Des Sel; 2004 Apr; 17(4):349-56. PubMed ID: 15115854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes.
    Kandaswamy KK; Pugalenthi G; Hartmann E; Kalies KU; Möller S; Suganthan PN; Martinetz T
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1306-11. PubMed ID: 19995554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-classical protein secretion in bacteria.
    Bendtsen JD; Kiemer L; Fausbøll A; Brunak S
    BMC Microbiol; 2005 Oct; 5():58. PubMed ID: 16212653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and prediction of mammalian protein glycation.
    Johansen MB; Kiemer L; Brunak S
    Glycobiology; 2006 Sep; 16(9):844-53. PubMed ID: 16762979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks.
    Blom N; Hansen J; Blaas D; Brunak S
    Protein Sci; 1996 Nov; 5(11):2203-16. PubMed ID: 8931139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites.
    Julenius K; Mølgaard A; Gupta R; Brunak S
    Glycobiology; 2005 Feb; 15(2):153-64. PubMed ID: 15385431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic screen for signal peptides in Hydra reveals novel secreted proteins and evidence for non-classical protein secretion.
    Böttger A; Strasser D; Alexandrova O; Levin A; Fischer S; Lasi M; Rudd S; David CN
    Eur J Cell Biol; 2006 Sep; 85(9-10):1107-17. PubMed ID: 16814424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature-based reappraisal of the Bacillus subtilis exoproteome.
    Tjalsma H
    Proteomics; 2007 Jan; 7(1):73-81. PubMed ID: 17149778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites.
    Julenius K
    Glycobiology; 2007 Aug; 17(8):868-76. PubMed ID: 17494086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition.
    Höglund A; Dönnes P; Blum T; Adolph HW; Kohlbacher O
    Bioinformatics; 2006 May; 22(10):1158-65. PubMed ID: 16428265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions.
    Voigt B; Schweder T; Sibbald MJ; Albrecht D; Ehrenreich A; Bernhardt J; Feesche J; Maurer KH; Gottschalk G; van Dijl JM; Hecker M
    Proteomics; 2006 Jan; 6(1):268-81. PubMed ID: 16317772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics-based consensus prediction of protein retention in a bacterial membrane.
    Tjalsma H; van Dijl JM
    Proteomics; 2005 Nov; 5(17):4472-82. PubMed ID: 16220534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites.
    Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI
    Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive yeast proteome analysis using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-MS/MS.
    Wang W; Guo T; Song T; Lee CS; Balgley BM
    Proteomics; 2007 Apr; 7(8):1178-87. PubMed ID: 17366490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the human proteome for non-redundant peptide islands.
    Capone G; De Marinis A; Simone S; Kusalik A; Kanduc D
    Amino Acids; 2008 Jun; 35(1):209-16. PubMed ID: 17701099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of signal peptides in protein sequences by neural networks.
    Plewczynski D; Slabinski L; Ginalski K; Rychlewski L
    Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Better Than Nothing? Limitations of the Prediction Tool SecretomeP in the Search for Leaderless Secretory Proteins (LSPs) in Plants.
    Lonsdale A; Davis MJ; Doblin MS; Bacic A
    Front Plant Sci; 2016; 7():1451. PubMed ID: 27729919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.