These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15116198)

  • 1. Model systems for flavoenzyme activity: an electrochemically tuneable model of roseoflavin.
    Cooke G; Legrand YM; Rotello VM
    Chem Commun (Camb); 2004 May; (9):1088-9. PubMed ID: 15116198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form.
    Langer S; Nakanishi S; Mathes T; Knaus T; Binter A; Macheroux P; Mase T; Miyakawa T; Tanokura M; Mack M
    Biochemistry; 2013 Jun; 52(25):4288-95. PubMed ID: 23713585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation.
    Gray M; Goodman AJ; Carroll JB; Bardon K; Markey M; Cooke G; Rotello VM
    Org Lett; 2004 Feb; 6(3):385-8. PubMed ID: 14748599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model systems for flavoenzyme activity: a tuneable intramolecularly hydrogen bonded flavin-diamidopyridine complex.
    Boyd AS; Carroll JB; Cooke G; Garety JF; Jordan BJ; Mabruk S; Rosair G; Rotello VM
    Chem Commun (Camb); 2005 May; (19):2468-70. PubMed ID: 15886773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo generation of flavoproteins with modified cofactors.
    Mathes T; Vogl C; Stolz J; Hegemann P
    J Mol Biol; 2009 Feb; 385(5):1511-8. PubMed ID: 19027027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli.
    Langer S; Hashimoto M; Hobl B; Mathes T; Mack M
    J Bacteriol; 2013 Sep; 195(18):4037-45. PubMed ID: 23836860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of xenobiotic reductase A (XenA): study of active site residues, substrate spectrum and stability.
    Yanto Y; Yu HH; Hall M; Bommarius AS
    Chem Commun (Camb); 2010 Dec; 46(46):8809-11. PubMed ID: 20959917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus.
    Quentmeier A; Hellwig P; Bardischewsky F; Wichmann R; Friedrich CG
    Biochemistry; 2004 Nov; 43(46):14696-703. PubMed ID: 15544340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants for FMN-binding in Desulfovibrio gigas flavoredoxin.
    Broco M; Soares CM; Oliveira S; Mayhew SG; Rodrigues-Pousada C
    FEBS Lett; 2007 Sep; 581(23):4397-402. PubMed ID: 17719581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Remarkable Oxidative Cascade That Replaces the Riboflavin C8 Methyl with an Amino Group during Roseoflavin Biosynthesis.
    Jhulki I; Chanani PK; Abdelwahed SH; Begley TP
    J Am Chem Soc; 2016 Jul; 138(27):8324-7. PubMed ID: 27331868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the Key Enzyme of Roseoflavin Biosynthesis.
    Schwarz J; Konjik V; Jankowitsch F; Sandhoff R; Mack M
    Angew Chem Int Ed Engl; 2016 May; 55(20):6103-6. PubMed ID: 27062037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti.
    Ye J; Yang HC; Rosen BP; Bhattacharjee H
    FEBS Lett; 2007 Aug; 581(21):3996-4000. PubMed ID: 17673204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of roseoflavin from guanine through riboflavin.
    Matsui K; Juri N; Kubo Y; Kasai S
    J Biochem; 1979 Jul; 86(1):167-75. PubMed ID: 479119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blue-light-triggered photorelease of active chemicals captured by the flavoprotein dodecin.
    Nöll G; Trawöger S; von Sanden-Flohe M; Dick B; Grininger M
    Chembiochem; 2009 Mar; 10(5):834-7. PubMed ID: 19253924
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular insights into the binding of coenzyme F420 to the conserved protein Rv1155 from Mycobacterium tuberculosis.
    Mashalidis EH; Gittis AG; Tomczak A; Abell C; Barry CE; Garboczi DN
    Protein Sci; 2015 May; 24(5):729-40. PubMed ID: 25644473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification.
    Seedorf H; Dreisbach A; Hedderich R; Shima S; Thauer RK
    Arch Microbiol; 2004 Oct; 182(2-3):126-37. PubMed ID: 15340796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavoproteins with a covalent histidyl(N3)-8 alpha-riboflavin linkage.
    Decker K; Brandsch R
    Biofactors; 1991 Jun; 3(2):69-81. PubMed ID: 1910454
    [No Abstract]   [Full Text] [Related]  

  • 18. A new role for coenzyme F420 in aflatoxin reduction by soil mycobacteria.
    Graham DE
    Mol Microbiol; 2010 Nov; 78(3):533-6. PubMed ID: 21038477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis.
    Ott E; Stolz J; Lehmann M; Mack M
    RNA Biol; 2009; 6(3):276-80. PubMed ID: 19333008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The critical role of a hydrogen bond between Gln63 and Trp104 in the blue-light sensing BLUF domain that controls AppA activity.
    Masuda S; Tomida Y; Ohta H; Takamiya K
    J Mol Biol; 2007 May; 368(5):1223-30. PubMed ID: 17399741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.