These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15116357)

  • 1. Sampling protein conformations and pathways.
    Lei M; Zavodszky MI; Kuhn LA; Thorpe MF
    J Comput Chem; 2004 Jul; 25(9):1133-48. PubMed ID: 15116357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-Based flexible ligand docking by evolutionary optimization.
    Budin N; Majeux N; Caflisch A
    Biol Chem; 2001 Sep; 382(9):1365-72. PubMed ID: 11688719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling correlated main-chain motions in proteins for flexible molecular recognition.
    Zavodszky MI; Lei M; Thorpe MF; Day AR; Kuhn LA
    Proteins; 2004 Nov; 57(2):243-61. PubMed ID: 15340912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained geometric simulation of diffusive motion in proteins.
    Wells S; Menor S; Hespenheide B; Thorpe MF
    Phys Biol; 2005 Nov; 2(4):S127-36. PubMed ID: 16280618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach.
    Gohlke H; Kuhn LA; Case DA
    Proteins; 2004 Aug; 56(2):322-37. PubMed ID: 15211515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A graph theoretical approach for analysis of protein flexibility change at protein complex formation.
    Del Carpio M CA; Shaikh AR; Ichiishi E; Koyama M; Kubo M; Nishijima K; Miyamoto A
    Genome Inform; 2005; 16(2):148-60. PubMed ID: 16901098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein flexibility predictions using graph theory.
    Jacobs DJ; Rader AJ; Kuhn LA; Thorpe MF
    Proteins; 2001 Aug; 44(2):150-65. PubMed ID: 11391777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring inhibitor-induced conformational population shifts in HIV-1 protease by pulsed EPR spectroscopy.
    Blackburn ME; Veloro AM; Fanucci GE
    Biochemistry; 2009 Sep; 48(37):8765-7. PubMed ID: 19691291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic regulation and ligand-induced conformational changes of tryptophan synthase.
    Fatmi MQ; Ai R; Chang CE
    Biochemistry; 2009 Oct; 48(41):9921-31. PubMed ID: 19764814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational equilibria and free energy profiles for the allosteric transition of the ribose-binding protein.
    Ravindranathan KP; Gallicchio E; Levy RM
    J Mol Biol; 2005 Oct; 353(1):196-210. PubMed ID: 16157349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flap opening mechanism of HIV-1 protease.
    Tóth G; Borics A
    J Mol Graph Model; 2006 May; 24(6):465-74. PubMed ID: 16188477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational flexibility in the flap domains of ligand-free HIV protease.
    Heaslet H; Rosenfeld R; Giffin M; Lin YC; Tam K; Torbett BE; Elder JH; McRee DE; Stout CD
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):866-75. PubMed ID: 17642513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational sampling by self-organization.
    Xu H; Izrailev S; Agrafiotis DK
    J Chem Inf Comput Sci; 2003; 43(4):1186-91. PubMed ID: 12870910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
    Tozzini V; Trylska J; Chang CE; McCammon JA
    J Struct Biol; 2007 Mar; 157(3):606-15. PubMed ID: 17029846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation influences flap collapse in HIV-1 protease.
    Meagher KL; Carlson HA
    Proteins; 2005 Jan; 58(1):119-25. PubMed ID: 15521062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism.
    Singh G; Senapati S
    Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein flexibility and dynamics using constraint theory.
    Thorpe MF; Lei M; Rader AJ; Jacobs DJ; Kuhn LA
    J Mol Graph Model; 2001; 19(1):60-9. PubMed ID: 11381531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs.
    Corbeil CR; Moitessier N
    J Chem Inf Model; 2009 Apr; 49(4):997-1009. PubMed ID: 19391631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [New algorithm for calculation of N-H peptide bond order parameter by the method of molecular dynamic modeling].
    Kanibolotskiĭ DS; Ivanova OS; Miroshnichenko NS; Lesniak VV
    Ukr Biokhim Zh (1999); 2007; 79(3):105-14. PubMed ID: 17988023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.