These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15116360)

  • 1. Improvement of parallelization performance of GAMESS: global sum and (semi-)direct integral calculation in multireference perturbation calculation.
    Umeda H; Koseki S; Nagashima U
    J Comput Chem; 2004 Jul; 25(9):1175-83. PubMed ID: 15116360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO).
    Fedorov DG; Olson RM; Kitaura K; Gordon MS; Koseki S
    J Comput Chem; 2004 Apr; 25(6):872-80. PubMed ID: 15011259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent performance improvements to the DFT and TDDFT in GAMESS.
    Lasinski ME; Romero NA; Brown ST; Blaudeau JP
    J Comput Chem; 2012 Mar; 33(7):723-31. PubMed ID: 22241553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoCalc: a new graphical user interface for molecular calculations.
    Depizzol DB; Paiva MH; Dos Santos TO; Gaudio AC
    J Comput Chem; 2005 Jan; 26(2):142-4. PubMed ID: 15584073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Fock matrix construction program for molecular orbital calculation--specific computer with a hierarchical network.
    Umeda H; Inadomi Y; Honda H; Nagashima U
    J Comput Chem; 2009 Apr; 30(5):826-31. PubMed ID: 18727159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A companion perturbation theory for state-specific multireference coupled cluster methods.
    Evangelista FA; Simmonett AC; Schaefer HF; Mukherjee D; Allen WD
    Phys Chem Chem Phys; 2009 Jun; 11(23):4728-41. PubMed ID: 19492126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Car-Parrinello treatment for an approximate density-functional theory method.
    Rapacioli M; Barthel R; Heine T; Seifert G
    J Chem Phys; 2007 Mar; 126(12):124103. PubMed ID: 17411104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory.
    Neugebauer J; Hess BA
    J Chem Phys; 2004 Jun; 120(24):11564-77. PubMed ID: 15268191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New parallel algorithm for MP2 energy gradient calculations.
    Ishimura K; Pulay P; Nagase S
    J Comput Chem; 2007 Sep; 28(12):2034-42. PubMed ID: 17450568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallelization of four-component calculations. II. Symmetry-driven parallelization of the 4-Spinor CCSD algorithm.
    Pernpointner M; Visscher L
    J Comput Chem; 2003 Apr; 24(6):754-9. PubMed ID: 12666167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configuration-driven unitary group approach for generalized Van Vleck variant multireference perturbation theory.
    Jiang W; Khait YG; Hoffmann MR
    J Phys Chem A; 2009 Apr; 113(16):4374-80. PubMed ID: 19290603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starting SCF calculations by superposition of atomic densities.
    Van Lenthe JH; Zwaans R; Van Dam HJ; Guest MF
    J Comput Chem; 2006 Jun; 27(8):926-32. PubMed ID: 16557519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the controversial nature of the 1 1B(u) and 2 1B(u) states of trans-stilbene: the n-electron valence state perturbation theory approach.
    Angeli C; Improta R; Santoro F
    J Chem Phys; 2009 May; 130(17):174307. PubMed ID: 19425776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis.
    Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M
    J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast fragments: the development of a parallel effective fragment potential method.
    Netzloff HM; Gordon MS
    J Comput Chem; 2004 Nov; 25(15):1926-35. PubMed ID: 15389744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark density functional theory calculations for nanoscale conductance.
    Strange M; Kristensen IS; Thygesen KS; Jacobsen KW
    J Chem Phys; 2008 Mar; 128(11):114714. PubMed ID: 18361608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.
    Höfener S; Bischoff FA; Glöss A; Klopper W
    Phys Chem Chem Phys; 2008 Jun; 10(23):3390-9. PubMed ID: 18535722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of low-order multireference many-body perturbation theories.
    Chaudhuri RK; Freed KF; Hose G; Piecuch P; Kowalski K; Włoch M; Chattopadhyay S; Mukherjee D; Rolik Z; Szabados A; Tóth G; Surján PR
    J Chem Phys; 2005 Apr; 122(13):134105. PubMed ID: 15847453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate calculation of core-electron binding energies: multireference perturbation treatment.
    Shirai S; Yamamoto S; Hyodo SA
    J Chem Phys; 2004 Oct; 121(16):7586-94. PubMed ID: 15485218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel DFT gradients using the Fourier Transform Coulomb method.
    Baker J; Wolinski K; Pulay P
    J Comput Chem; 2007 Dec; 28(16):2581-8. PubMed ID: 17486551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.