BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 15116378)

  • 61. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.
    Gilio F; Iacovelli E; Frasca V; Gabriele M; Giacomelli E; De Lena C; Cipriani AM; Inghilleri M
    Neurosci Lett; 2009 May; 455(1):1-3. PubMed ID: 19429094
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Low-rate nerve stimulation during regional ischemia in the diagnosis of muscle glycogenosis.
    Lomonaco M; Milone M; Valente EM; Padua L; Tonali P
    Muscle Nerve; 1996 Dec; 19(12):1523-9. PubMed ID: 8941265
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Repetitive nerve stimulation: effects of recording site and the nature of 'pseudofacilitation'.
    van Dijk JG; van der Hoeven BJ; van der Hoeven H
    Clin Neurophysiol; 2000 Aug; 111(8):1411-9. PubMed ID: 10904222
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Electrophysiologic findings and grip strength after nerve injuries in the rat forelimb.
    Wang H; Sorenson EJ; Spinner RJ; Windebank AJ
    Muscle Nerve; 2008 Oct; 38(4):1254-65. PubMed ID: 18671290
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A new method using F-waves to measure muscle fiber conduction velocity (MFCV).
    Metani H; Tsubahara A; Hiraoka T; Aoyagi Y; Tanaka Y
    Electromyogr Clin Neurophysiol; 2005 Jun; 45(4):245-53. PubMed ID: 16083149
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluation of Na+/K+ pump function following repetitive activity in mouse peripheral nerve.
    Moldovan M; Krarup C
    J Neurosci Methods; 2006 Sep; 155(2):161-71. PubMed ID: 16466807
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The application of tetanic stimulation of the unilateral tibial nerve before transcranial stimulation can augment the amplitudes of myogenic motor-evoked potentials from the muscles in the bilateral upper and lower limbs.
    Hayashi H; Kawaguchi M; Yamamoto Y; Inoue S; Koizumi M; Ueda Y; Takakura Y; Furuya H
    Anesth Analg; 2008 Jul; 107(1):215-20. PubMed ID: 18635490
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Axonal function and activity-dependent excitability changes in myotonic dystrophy.
    Krishnan AV; Kiernan MC
    Muscle Nerve; 2006 May; 33(5):627-36. PubMed ID: 16453325
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Subperiosteal elevation of the ulnar nerve-Anatomical considerations and preliminary results.
    Krkovic M; Bosnjak R
    Injury; 2008 Jul; 39(7):761-7. PubMed ID: 18417133
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Decrement of compound muscle action potential is related to mutation type in myotonia congenita.
    Colding-Jørgensen E; DunØ M; Schwartz M; Vissing J
    Muscle Nerve; 2003 Apr; 27(4):449-55. PubMed ID: 12661046
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Axonal excitability measured by tracking twitch contraction force.
    Trevillion L; Howells J; Jankelowitz S; Burke D
    Muscle Nerve; 2004 Oct; 30(4):437-43. PubMed ID: 15372538
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Impaired neuromuscular transmission after recovery of the train-of-four ratio.
    Eikermann M; Gerwig M; Hasselmann C; Fiedler G; Peters J
    Acta Anaesthesiol Scand; 2007 Feb; 51(2):226-34. PubMed ID: 17261149
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of changing data collection parameters on statistical motor unit number estimates.
    Henderson RD; McClelland R; Daube JR
    Muscle Nerve; 2003 Mar; 27(3):320-31. PubMed ID: 12635119
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Age-related changes in nerve action potentials of median nerve--an analysis using intraneural neurography].
    Hasegawa O; Komiyama A; Kurita R; Ota S; Matsumoto M
    Rinsho Shinkeigaku; 1993 Oct; 33(10):1055-8. PubMed ID: 8293605
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Length-dependent weakness and electrophysiological signs of secondary axonal loss in chronic inflammatory demyelinating polyradiculoneuropathy.
    Harbo T; Andersen H; Jakobsen J
    Muscle Nerve; 2008 Aug; 38(2):1036-45. PubMed ID: 18642356
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electrophysiological differences in seropositive and seronegative Lambert-Eaton myasthenic syndrome.
    Oh SJ; Hatanaka Y; Claussen GC; Sher E
    Muscle Nerve; 2007 Feb; 35(2):178-83. PubMed ID: 17058271
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The contribution of the interosseous muscles to the hypothenar compound muscle action potential.
    McGill KC; Lateva ZC
    Muscle Nerve; 1999 Jan; 22(1):6-15. PubMed ID: 9883852
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A reappraisal of various methods for measuring motor nerve refractory period in humans.
    Boërio D; Hogrel JY; Créange A; Lefaucheur JP
    Clin Neurophysiol; 2005 Apr; 116(4):969-76. PubMed ID: 15792907
    [TBL] [Abstract][Full Text] [Related]  

  • 79. On the methods employed to record and measure the human soleus H-reflex.
    Knikou M; Taglianetti C
    Somatosens Mot Res; 2006; 23(1-2):55-62. PubMed ID: 16846960
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Relationship between the size of the recording electrodes and morphology of the compound muscle action potentials.
    Wee AS; Ashley RA
    Electromyogr Clin Neurophysiol; 1990; 30(3):165-8. PubMed ID: 2351092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.